Shamsiev Ravshan S
MIREA - Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, 86 Vernadsky Avenue, 119571, Moscow, Russian Federation.
J Mol Model. 2023 Oct 16;29(11):342. doi: 10.1007/s00894-023-05738-7.
The interaction of norbornadiene (NBD) and norbornene (NBE) with the palladium (111) and (100) surfaces have been investigated using density functional theory (DFT). Five configurations of adsorbed NBD may be formed on Pd(111): endo-tetra-σ, endo-di-σ,π, endo-di-π, exo-di-σ, and exo-π. The NBE molecule adsorbed on Pd(111) may exist in 4 configurations: endo-di-σ, endo-π, exo-di-σ, and exo-π. On Pd(100), a smaller number adsorption configurations of NBD and NBE are formed, since the double bonds of these molecules in the endo-orientation are bound only in a di-σ mode. The adsorption energy of NBD and NBE molecules on Pd(100) is noticeably higher compared to Pd(111), which is due to the surface geometry of Pd(100). The most stable configurations on both Pd facets are endo-tetra-σ for NBD and exo-di-σ for NBE. However, due to smaller adsorption area of the exo-di-σ configuration on Pd(111), a larger number of NBD molecules may adsorbed on the same surface area. Energetically favorable endo-tetra-σ (NBD) and exo-di-σ (NBE) configurations are very mobile on Pd(111). On Pd(100), only NBE molecules can migrate, while NBD migration is hindered due to the high activation barrier.
All DFT calculations were performed using the Perdew-Burke-Ernzerhof density functional (PBE) with the relativistic SBK effective core potential and TZ2P basis set in the PRIRODA program.
利用密度泛函理论(DFT)研究了降冰片二烯(NBD)和降冰片烯(NBE)与钯(111)和(100)表面的相互作用。在Pd(111)上可能形成五种吸附态的NBD构型:内式-四-σ、内式-二-σ,π、内式-二-π、外式-二-σ和外式-π。吸附在Pd(111)上的NBE分子可能以4种构型存在:内式-二-σ、内式-π、外式-二-σ和外式-π。在Pd(100)上,形成的NBD和NBE的吸附构型数量较少,因为这些分子在内式取向的双键仅以二-σ模式结合。与Pd(111)相比,NBD和NBE分子在Pd(100)上的吸附能明显更高,这是由于Pd(100)的表面几何结构所致。在两个钯晶面上最稳定的构型,对于NBD是内式-四-σ,对于NBE是外式-二-σ。然而,由于外式-二-σ构型在Pd(111)上的吸附面积较小,相同表面积上可能吸附更多数量的NBD分子。能量上有利的内式-四-σ(NBD)和外式-二-σ(NBE)构型在Pd(111)上非常容易移动。在Pd(100)上,只有NBE分子可以迁移,而NBD的迁移由于高活化能垒而受到阻碍。
所有DFT计算均使用Perdew-Burke-Ernzerhof密度泛函(PBE),在PRIRODA程序中采用相对论SBK有效核势和TZ2P基组进行。