Suppr超能文献

基于自动可解释特征选择的物联网系统入侵检测的注意 Transformer 深度学习算法。

Attentive transformer deep learning algorithm for intrusion detection on IoT systems using automatic Xplainable feature selection.

机构信息

Department of Computer Science, Federal University of Lavras, Minas Gerais, Brazil.

Center for Engineering, Modeling, and Applied Social Sciences, Federal University of ABC, Santo Andre, São Paulo, Brazil.

出版信息

PLoS One. 2023 Oct 16;18(10):e0286652. doi: 10.1371/journal.pone.0286652. eCollection 2023.

Abstract

Recent years have witnessed an in-depth proliferation of the Internet of Things (IoT) and Industrial Internet of Things (IIoT) systems linked to Industry 4.0 technology. The increasing rate of IoT device usage is associated with rising security risks resulting from malicious network flows during data exchange between the connected devices. Various security threats have shown high adverse effects on the availability, functionality, and usability of the devices among which denial of service (DoS) and distributed denial of service (DDoS), which attempt to exhaust the capacity of the IoT network (gateway), thereby causing failure in the functionality of the system have been more pronounced. Various machine learning and deep learning algorithms have been used to propose intelligent intrusion detection systems (IDS) to mitigate the challenging effects of these network threats. One concern is that although deep learning algorithms have shown good accuracy results on tabular data, not all deep learning algorithms can perform well on tabular datasets, which happen to be the most commonly available format of datasets for machine learning tasks. Again, there is also the challenge of model explainability and feature selection, which affect model performance. In this regard, we propose a model for IDS that uses attentive mechanisms to automatically select salient features from a dataset to train the IDS model and provide explainable results, the TabNet-IDS. We implement the proposed model using the TabNet algorithm based on PyTorch which is a deep-learning framework. The results obtained show that the TabNet architecture can be used on tabular datasets for IoT security to achieve good results comparable to those of neural networks, reaching an accuracy of 97% on CIC-IDS2017, 95% on CSE-CICIDS2018 and 98% on CIC-DDoS2019 datasets.

摘要

近年来,物联网(IoT)和工业物联网(IIoT)系统与工业 4.0 技术的联系日益深入。随着物联网设备使用量的增加,恶意网络流量在设备之间交换数据时会产生越来越多的安全风险。各种安全威胁对设备的可用性、功能性和可用性造成了很高的负面影响,其中拒绝服务(DoS)和分布式拒绝服务(DDoS)试图耗尽物联网网络(网关)的容量,从而导致系统功能失效,这些威胁的影响更为明显。各种机器学习和深度学习算法已被用于提出智能入侵检测系统(IDS),以减轻这些网络威胁的挑战性影响。一个问题是,尽管深度学习算法在表格数据上表现出了很好的准确性结果,但并非所有深度学习算法都能在表格数据集上表现良好,而表格数据集恰好是机器学习任务中最常用的数据集格式。此外,还存在模型可解释性和特征选择的挑战,这会影响模型的性能。在这方面,我们提出了一种使用注意机制从数据集中自动选择显著特征来训练 IDS 模型并提供可解释结果的 IDS 模型,即 TabNet-IDS。我们使用基于 PyTorch 的 TabNet 算法实现了所提出的模型,这是一种深度学习框架。所得结果表明,TabNet 架构可用于物联网安全的表格数据集,以获得与神经网络相当的良好结果,在 CIC-IDS2017 上达到 97%的准确率,在 CSE-CICIDS2018 上达到 95%的准确率,在 CIC-DDoS2019 上达到 98%的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d24/10578588/79dcaa840542/pone.0286652.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验