Suppr超能文献

结核分枝杆菌药物靶点识别的演进模型的分岔分析。

Bifurcation analysis of a tuberculosis progression model for drug target identification.

机构信息

Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico, Mexico.

Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, 14080, Mexico City, Mexico.

出版信息

Sci Rep. 2023 Oct 16;13(1):17567. doi: 10.1038/s41598-023-44569-7.

Abstract

Tuberculosis (TB) is a major cause of morbidity and mortality worldwide. The emergence and rapid spread of drug-resistant M. tuberculosis strains urge us to develop novel treatments. Experimental trials are constrained by laboratory capacity, insufficient funds, low number of laboratory animals and obsolete technology. Systems-level approaches to quantitatively study TB can overcome these limitations. Previously, we proposed a mathematical model describing the key regulatory mechanisms underlying the pathological progression of TB. Here, we systematically explore the effect of parameter variations on disease outcome. We find five bifurcation parameters that steer the clinical outcome of TB: number of bacteria phagocytosed per macrophage, macrophages death, macrophage killing by bacteria, macrophage recruitment, and phagocytosis of bacteria. The corresponding bifurcation diagrams show all-or-nothing dose-response curves with parameter regions mapping onto bacterial clearance, persistent infection, or history-dependent clearance or infection. Importantly, the pathogenic stage strongly affects the sensitivity of the host to these parameter variations. We identify parameter values corresponding to a latent-infection model of TB, where disease progression occurs significantly slower than in progressive TB. Two-dimensional bifurcation analyses uncovered synergistic parameter pairs that could act as efficient compound therapeutic approaches. Through bifurcation analysis, we reveal how modulation of specific regulatory mechanisms could steer the clinical outcome of TB.

摘要

结核病(TB)是全球发病率和死亡率的主要原因。耐药结核分枝杆菌菌株的出现和迅速传播促使我们开发新的治疗方法。实验性试验受到实验室能力、资金不足、实验室动物数量少和技术过时的限制。定量研究结核病的系统方法可以克服这些限制。之前,我们提出了一个数学模型,描述了结核病病理进展的关键调控机制。在这里,我们系统地探讨了参数变化对疾病结果的影响。我们发现了五个分叉参数,它们可以控制结核病的临床结果:每个巨噬细胞吞噬的细菌数量、巨噬细胞死亡、细菌对巨噬细胞的杀伤、巨噬细胞募集和细菌吞噬。相应的分叉图显示了所有或无的剂量反应曲线,参数区域映射到细菌清除、持续感染或依赖于历史的清除或感染。重要的是,致病阶段强烈影响宿主对这些参数变化的敏感性。我们确定了与结核病潜伏感染模型相对应的参数值,其中疾病进展明显比进行性结核病慢。二维分叉分析揭示了可以作为有效联合治疗方法的协同参数对。通过分叉分析,我们揭示了如何调节特定的调控机制来控制结核病的临床结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7433/10579266/d58cb8467d3c/41598_2023_44569_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验