Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.
Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States.
J Chem Inf Model. 2023 Nov 13;63(21):6851-6862. doi: 10.1021/acs.jcim.3c01305. Epub 2023 Oct 17.
The formation of G-quadruplexes (GQs) occurs in guanine-rich sequences of DNA and RNA, producing highly stable and structurally diverse noncanonical nucleic acid structures. GQs play crucial roles in regulating transcription, translation, and replication and maintaining the genome, among others; thus, changes to their structures can lead to diseases such as cancer. Previous studies using polarizable molecular dynamics simulations have shown differences in ion binding properties between telomeric and telomeric repeat-containing RNA GQs despite architectural similarities. Here, we used volume-based metadynamics and repulsive potential simulations in conjunction with polarizable force fields to quantify the impact of ion binding on the GQ dynamics and ion binding free energies. Furthermore, we describe how GQs exert electric fields on their surroundings to link dynamics with variations in the electronic structure. Our findings provide new insights into the energetic, physical, and conformational properties of GQs and expose subtle but important differences between DNA and RNA GQs with the same fold.
G-四链体(GQs)形成于富含鸟嘌呤的 DNA 和 RNA 序列中,产生高度稳定且结构多样的非经典核酸结构。GQs 在调节转录、翻译和复制以及维持基因组等方面发挥着关键作用;因此,它们结构的变化可能导致癌症等疾病。尽管结构相似,但使用极化分子动力学模拟的先前研究表明,端粒和端粒重复 RNA GQs 之间的离子结合特性存在差异。在这里,我们使用基于体积的元动力学和排斥势模拟以及极化力场来量化离子结合对 GQ 动力学和离子结合自由能的影响。此外,我们描述了 GQs 如何对其周围环境施加电场,将动力学与电子结构的变化联系起来。我们的研究结果提供了对 GQs 的能量、物理和构象特性的新见解,并揭示了具有相同折叠的 DNA 和 RNA GQs 之间的细微但重要的差异。