Suppr超能文献

结构感知去阴影网络

Structure-Informed Shadow Removal Networks.

作者信息

Liu Yuhao, Guo Qing, Fu Lan, Ke Zhanghan, Xu Ke, Feng Wei, Tsang Ivor W, Lau Rynson W H

出版信息

IEEE Trans Image Process. 2023;32:5823-5836. doi: 10.1109/TIP.2023.3323814. Epub 2023 Nov 1.

Abstract

Existing deep learning-based shadow removal methods still produce images with shadow remnants. These shadow remnants typically exist in homogeneous regions with low-intensity values, making them untraceable in the existing image-to-image mapping paradigm. We observe that shadows mainly degrade images at the image-structure level (in which humans perceive object shapes and continuous colors). Hence, in this paper, we propose to remove shadows at the image structure level. Based on this idea, we propose a novel structure-informed shadow removal network (StructNet) to leverage the image-structure information to address the shadow remnant problem. Specifically, StructNet first reconstructs the structure information of the input image without shadows and then uses the restored shadow-free structure prior to guiding the image-level shadow removal. StructNet contains two main novel modules: 1) a mask-guided shadow-free extraction (MSFE) module to extract image structural features in a non-shadow-to-shadow directional manner; and 2) a multi-scale feature & residual aggregation (MFRA) module to leverage the shadow-free structure information to regularize feature consistency. In addition, we also propose to extend StructNet to exploit multi-level structure information (MStructNet), to further boost the shadow removal performance with minimum computational overheads. Extensive experiments on three shadow removal benchmarks demonstrate that our method outperforms existing shadow removal methods, and our StructNet can be integrated with existing methods to improve them further.

摘要

现有的基于深度学习的阴影去除方法仍然会产生带有阴影残留的图像。这些阴影残留通常存在于低强度值的均匀区域,使得它们在现有的图像到图像映射范式中难以被追踪。我们观察到,阴影主要在图像结构层面(即人类感知物体形状和连续颜色的层面)使图像质量下降。因此,在本文中,我们提议在图像结构层面去除阴影。基于这一想法,我们提出了一种新颖的结构感知阴影去除网络(StructNet),以利用图像结构信息来解决阴影残留问题。具体而言,StructNet首先重建无阴影的输入图像的结构信息,然后在引导图像层面的阴影去除之前使用恢复的无阴影结构。StructNet包含两个主要的新颖模块:1)一个掩码引导的无阴影提取(MSFE)模块,以非阴影到阴影的方向方式提取图像结构特征;2)一个多尺度特征与残差聚合(MFRA)模块,以利用无阴影结构信息来规范特征一致性。此外,我们还提议扩展StructNet以利用多级结构信息(MStructNet),以在最小计算开销的情况下进一步提高阴影去除性能。在三个阴影去除基准上进行的大量实验表明,我们的方法优于现有的阴影去除方法,并且我们的StructNet可以与现有方法集成以进一步改进它们。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验