Suppr超能文献

基于趋化因子相关基因的肝细胞癌亚型分类和预后模型构建。

Hepatocellular Carcinoma Subtyping and Prognostic Model Construction Based on Chemokine-Related Genes.

机构信息

Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China,

Pharmacy Department, Zhejiang Jinhua Guangfu Tumor Hospital, Jinhua, China.

出版信息

Med Princ Pract. 2023;32(6):332-342. doi: 10.1159/000534537. Epub 2023 Oct 17.

Abstract

BACKGROUND

Chemokines not only regulate immune cells but also play significant roles in development and treatment of tumors and patient prognoses. However, these effects have not been fully explained in hepatocellular carcinoma (HCC).

MATERIALS AND METHODS

We conducted a clustering analysis of chemokine-related genes. We then examined the differences in survival rates and analyzed immune levels using single-sample Gene Set Enrichment Analysis (ssGSEA) for each subtype. Based on chemokine-related genes of different subtypes, we built a prognostic model in The Cancer Genome Atlas (TCGA) dataset using the survival package and glmnet package and validated it in the Gene Expression Omnibus (GEO) dataset. We used univariate and multivariate regression analyses to select independent prognostic factors and used R package rms to draw a nomogram reflecting patient survival rates at 1, 3, and 5 years.

RESULTS

We identified two chemokine subtypes and, after screening, found that Cluster1 had higher survival rates than Cluster2. In addition, in terms of immune evaluation, stromal evaluation, ESTIMATE evaluation, immune abundance, immune function, and expressions of various immune checkpoints, immune levels of Cluster1 were significantly better than those of Cluster2. The immunophenoscore (IPS) of HCC patients in Cluster1 was significantly higher than that in Cluster2. Furthermore, we established a prognostic model consisting of 9 genes, which correlated with chemokines. Through testing, Riskscore was revealed as an independent prognostic factor, and the model could effectively predict HCC patients' prognoses in both TCGA and GEO datasets.

CONCLUSION

This study resulted in the development of a novel prognostic model related to chemokine genes, providing new targets and theoretical support for HCC patients.

摘要

背景

趋化因子不仅调节免疫细胞,而且在肿瘤的发生发展和患者预后中也发挥着重要作用。然而,这些作用在肝细胞癌(HCC)中尚未得到充分解释。

材料和方法

我们对趋化因子相关基因进行聚类分析。然后,我们使用单样本基因集富集分析(ssGSEA)对每种亚型进行生存率差异检测和免疫水平分析。基于不同亚型的趋化因子相关基因,我们使用 survival 包和 glmnet 包在 The Cancer Genome Atlas(TCGA)数据集构建了一个预后模型,并在 Gene Expression Omnibus(GEO)数据集进行了验证。我们使用单变量和多变量回归分析筛选独立的预后因素,并使用 R 包 rms 绘制反映患者 1、3 和 5 年生存率的列线图。

结果

我们确定了两种趋化因子亚型,经过筛选,发现 Cluster1 的生存率高于 Cluster2。此外,在免疫评估、基质评估、ESTIMATE 评估、免疫丰度、免疫功能和各种免疫检查点表达方面,Cluster1 的免疫水平明显优于 Cluster2。Cluster1 的 HCC 患者免疫表型评分(IPS)明显高于 Cluster2。此外,我们建立了一个由 9 个与趋化因子相关的基因组成的预后模型。通过测试,Riskscore 被揭示为一个独立的预后因素,该模型能够有效地预测 TCGA 和 GEO 数据集的 HCC 患者的预后。

结论

本研究建立了一个与趋化因子基因相关的新的预后模型,为 HCC 患者提供了新的治疗靶点和理论支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b11/10727522/2d6bf28a7217/mpp-2023-0032-0006-534537_F01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验