Dunstone Nick, Smith Doug M, Hardiman Steven C, Davies Paul, Ineson Sarah, Jain Shipra, Kent Chris, Martin Gill, Scaife Adam A
Met Office Hadley Centre, Exeter, United Kingdom.
Centre for Climate Research Singapore (CCRS), Singapore, Singapore.
Nat Commun. 2023 Oct 17;14(1):6544. doi: 10.1038/s41467-023-42377-1.
Skilful predictions of near-term climate extremes are key to a resilient society. However, standard methods of analysing seasonal forecasts are not optimised to identify the rarer and most impactful extremes. For example, standard tercile probability maps, used in real-time regional climate outlooks, failed to convey the extreme magnitude of summer 2022 Pakistan rainfall that was, in fact, widely predicted by seasonal forecasts. Here we argue that, in this case, a strong summer La Niña provided a window of opportunity to issue a much more confident forecast for extreme rainfall than average skill estimates would suggest. We explore ways of building forecast confidence via a physical understanding of dynamical mechanisms, perturbation experiments to isolate extreme drivers, and simple empirical relationships. We highlight the need for more detailed routine monitoring of forecasts, with improved tools, to identify regional climate extremes and hence utilise windows of opportunity to issue trustworthy and actionable early warnings.
对近期极端气候进行精准预测是社会具备适应力的关键。然而,分析季节性预报的标准方法并非为识别罕见且影响最大的极端情况而优化。例如,实时区域气候展望中使用的标准三分位概率图,未能体现出2022年夏季巴基斯坦降雨量的极端程度,而实际上季节性预报已广泛预测到了这一点。在此我们认为,在这种情况下,强烈的夏季拉尼娜现象提供了一个机会窗口,能够对极端降雨发出比平均技能评估所显示的更为可靠的预报。我们探索通过对动力机制的物理理解、隔离极端驱动因素的扰动实验以及简单的经验关系来建立预报信心的方法。我们强调需要借助改进的工具对预报进行更详细的常规监测,以识别区域气候极端情况,从而利用机会窗口发布可靠且可采取行动的早期预警。