Department of Civil Engineering, National Institute of Technology (NIT), Rourkela, Odisha, India.
Department of Civil Engineering, University of Maine, Orono, USA.
Environ Monit Assess. 2023 Oct 17;195(11):1331. doi: 10.1007/s10661-023-11876-5.
Flood inundation mapping and satellite imagery monitoring are critical and effective responses during flood events. Mapping of a flood using optical data is limited due to the unavailability of cloud-free images. Because of its capacity to penetrate clouds and operate in all kinds of weather, synthetic aperture radar is preferred for water inundation mapping. Flood mapping in Eastern India's Baitarani River Basin for 2018, 2019, 2020, 2021, and 2022 was performed in this study using Sentinel-1 imagery and Google Earth Engine with Otsu's algorithm. Different machine-learning algorithms were used to map the LULC of the study region. Dual polarizations VH and VV and their combinations VV×VH, VV+VH, VH-VV, VV-VH, VV/VH, and VH/VV were examined to identify non-water and water bodies. The normalized difference water index (NDWI) map derived from Sentinel-2 data validated the surface water inundation with 80% accuracy. The total inundated areas were identified as 440.3 km in 2018, 268.58 km in 2019, 178.40 km in 2020, 203.79 km in 2021, and 321.33 km in 2022, respectively. The overlap of flood maps on the LULC map indicated that flooding highly affected agriculture and urban areas in these years. The approach using the near-real-time Sentinel-1 SAR imagery and GEE platform can be operationalized for periodic flood mapping, helps develop flood control measures, and helps enhance flood management. The generated annual flood inundation maps are also useful for policy development, agriculture yield estimation, crop insurance framing, etc.
洪水淹没制图和卫星图像监测是洪水事件期间的关键和有效应对措施。由于无法获得无云图像,因此使用光学数据进行洪水测绘受到限制。由于合成孔径雷达能够穿透云层并在各种天气条件下运行,因此它是水淹没制图的首选。本研究使用 Sentinel-1 图像和 Google Earth Engine 以及大津算法对 2018 年、2019 年、2020 年、2021 年和 2022 年印度东部拜塔尼河流域的洪水进行了测绘。研究区域的土地利用/土地覆盖(LULC)采用不同的机器学习算法进行测绘。检查了双极化 VH 和 VV 及其组合 VV×VH、VV+VH、VH-VV、VV-VH、VV/VH 和 VH/VV,以识别非水体和水体。从 Sentinel-2 数据得出的归一化差异水体指数(NDWI)图验证了地表水淹没,准确率为 80%。2018 年总淹没面积为 440.3 平方公里,2019 年为 268.58 平方公里,2020 年为 178.40 平方公里,2021 年为 203.79 平方公里,2022 年为 321.33 平方公里。洪水图与土地利用/土地覆盖图的重叠表明,这些年洪水严重影响了农业和城市地区。使用近实时 Sentinel-1 SAR 图像和 GEE 平台的方法可以实现定期洪水测绘,有助于制定防洪措施,并有助于加强洪水管理。生成的年度洪水淹没图也有助于政策制定、农业产量估计、作物保险框架等。