Suppr超能文献

利用支持向量机和基于细胞自动机的人工神经网络模型进行土地利用/土地覆盖变化检测——以埃塞俄比亚阿巴亚流域贡纳塔纳流域为例。

LULC change detection using support vector machines and cellular automata-based ANN models in Guna Tana watershed of Abay basin, Ethiopia.

机构信息

Hydraulic and Water Resources Engineering, AWTI, Arba Minch University, Arba Minch, Ethiopia.

出版信息

Environ Monit Assess. 2023 Oct 17;195(11):1329. doi: 10.1007/s10661-023-11968-2.

Abstract

Recurrent changes recorded in LULC in Guna Tana watershed are a long-standing problem due to the increase in urbanization and agricultural lands. This research aims at identifying and predicting frequent changes observed using support vector machines (SVM) for supervised classification and cellular automata-based artificial neural network (CA-ANN) models for prediction in the quantum geographic information systems (QGIS) plugin MOLUSCE. Multi-temporal spatial Landsat 5 Thematic Mapper (TM) imageries, Enhanced Thematic Mapper plus 7 (ETM+), and Landsat 8 Operational Land Imager (OLI) images were used to find the acute problem the watershed is facing. Accuracy was assessed using the confusion matrix in ArcGIS 10.4 produced from ground truth data and Google Earth Pro. The results acquired from kappa statistics for 1991, 2007, and 2021 were 0.78, 0.83, and 0.88 respectively. The change detection trend indicates that urban land cover has an increasing trend throughout the entire period. In the future trend, agriculture land may shoot up to 86.79% and 86.78% of land use class in 2035 and 2049. Grassland may attenuate by 0.03% but the forest land will substantially diminish by 0.01% from 2035 to 2049. The increase of land specifically was observed in agriculture from 3128.4 to 3130 km. Judicious planning and proper execution may resolve the water management issues incurred in the basin to secure the watershed.

摘要

古纳塔纳流域土地利用和土地覆被的反复变化是一个长期存在的问题,这主要是由于城市化和农业用地的增加所致。本研究旨在利用支持向量机(SVM)进行监督分类和基于元胞自动机的人工神经网络(CA-ANN)模型进行预测,以识别和预测古纳塔纳流域量子地理信息系统(QGIS)插件 MOLUSCE 中观察到的频繁变化。多时空 Landsat 5 专题制图仪(TM)图像、增强型专题制图仪 plus 7(ETM+)和 Landsat 8 操作陆地成像仪(OLI)图像被用于发现该流域面临的紧迫问题。利用来自实地数据和 Google Earth Pro 的 ArcGIS 10.4 生成的混淆矩阵评估了精度。1991 年、2007 年和 2021 年获得的kappa 统计数据的结果分别为 0.78、0.83 和 0.88。变化检测趋势表明,城市土地覆盖在整个时期呈增长趋势。在未来趋势中,农业用地在 2035 年和 2049 年可能分别增加到 86.79%和 86.78%的土地利用类别。草地可能会减少 0.03%,但林地在 2035 年至 2049 年期间将大幅减少 0.01%。具体来说,农业用地增加了 3128.4 到 3130 平方公里。明智的规划和适当的执行可能会解决流域内发生的水管理问题,以确保流域的安全。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验