Suppr超能文献

利用谷歌地球引擎和细胞自动机-人工神经网络(CA-ANN)模型模拟巴勒山国家公园的土地利用和土地覆盖动态变化

Modeling land use and land cover dynamics of Bale Mountains National Park using Google Earth Engine and cellular automata-artificial neural network (CA-ANN) model.

作者信息

Tiye Firdissa Sadeta, Korecha Diriba, Gutema Tariku Mekonnen, Gemeda Dessalegn Obsi

机构信息

Department of Natural Resource Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia.

California University Santa Barbara, Climate Hazards Center, Famine Early Warning Systems Network Ethiopia Office, Addis Ababa, Ethiopia.

出版信息

PLoS One. 2025 Apr 30;20(4):e0320428. doi: 10.1371/journal.pone.0320428. eCollection 2025.

Abstract

This research aimed to assess the observed land use and land cover (LULC) changes of Bale Mountains National Park (BMNP) from 1993 to 2023 and its future projections for the years (2033 and 2053). The study utilized multi-date Landsat imagery from 1993, 2003, 2013, and 2023, leveraging Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI-TIRS sensors for LULC classification. Standard image pre-processing techniques were applied, and composite images were created using yearly median values in Google Earth Engine (GEE). In addition to satellite data, both physical and socioeconomic variables were used as input for future LULC modeling. The Random Forest (RF) classification algorithm was used for image classification, while the Cellular Automata Artificial Neural Networks (CA-ANN) model within the Modules for Land Use Change Simulations (MOLUSCE) plugin of QGIS was employed for future LULC projection. The analysis revealed significant LULC changes in BMNP, from 1993 to 2023, primarily due to anthropogenic activities, with further changes anticipated between 2023 and 2053.The results showed a notable increase in woodland and shrubs at the expense of grassland and Erica forest. While woodland and shrubs increased by 87.18% and 36.7%, areas of Erica forest and grassland lost about 25% and 22% of their area, respectively, during this period. The LULC model results also indicated that areas covered by woodland and shrubs are expected to increase by 15.97% and 15.57%, respectively, between 2023 and 2053. Conversely, land areas occupied by cultivated land, Erica forest, grassland, and herbaceous plants are projected to decrease by 28.52%, 3.28%, 19.03%, and 6.55%, respectively. Proximity to roads and urban areas combined with rising temperatures and altered precipitation patterns emerged as critical factors influencing land use conversion patterns in BMNP. These findings underscore the complex interplay between environmental factors and human activities in shaping land cover dynamics. Hence, promoting sustainable land management practices among the park administration and local community as well as enhancing habitat protection efforts are recommended. Additionally, integrating advanced remote sensing technologies with ground truthing efforts will be essential for accurate assessments of LULC dynamics in this critical area of biodiversity.

摘要

本研究旨在评估1993年至2023年期间巴勒山国家公园(BMNP)观测到的土地利用和土地覆盖(LULC)变化及其对2033年和2053年的未来预测。该研究利用了1993年、2003年、2013年和2023年的多期陆地卫星图像,借助陆地卫星5号专题制图仪(TM)、陆地卫星7号增强型专题制图仪(ETM+)和陆地卫星8号业务陆地成像仪-热红外传感器(OLI-TIRS)进行LULC分类。应用了标准的图像预处理技术,并在谷歌地球引擎(GEE)中使用年度中值创建了合成图像。除卫星数据外,物理和社会经济变量均被用作未来LULC建模的输入。随机森林(RF)分类算法用于图像分类,而QGIS的土地利用变化模拟模块(MOLUSCE)插件中的细胞自动机人工神经网络(CA-ANN)模型用于未来LULC预测。分析表明,1993年至2023年期间BMNP的LULC发生了显著变化,主要是由于人为活动,预计2023年至2053年还会有进一步变化。结果显示,林地和灌木显著增加,草地和欧石南森林减少。在此期间,林地和灌木分别增加了87.18%和36.7%,而欧石南森林和草地面积分别损失了约25%和22%。LULC模型结果还表明,2023年至2053年期间,林地和灌木覆盖面积预计将分别增加15.97%和15.57%。相反,耕地、欧石南森林、草地和草本植物所占土地面积预计将分别减少28.52%、3.28%、19.03%和6.55%。靠近道路和城市地区,再加上气温上升和降水模式改变,成为影响BMNP土地利用转换模式的关键因素。这些发现强调了环境因素和人类活动在塑造土地覆盖动态方面的复杂相互作用。因此,建议公园管理部门和当地社区推行可持续土地管理做法,并加强栖息地保护工作。此外,将先进的遥感技术与地面实况调查相结合,对于准确评估这一生物多样性关键地区的LULC动态至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07a0/12043153/b2d67bd03d11/pone.0320428.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验