Wang Shulei
School of Automotive Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu, China.
Front Neurorobot. 2023 Oct 2;17:1269105. doi: 10.3389/fnbot.2023.1269105. eCollection 2023.
Res-FLNet presents a cutting-edge solution for addressing autonomous driving tasks in the context of multimodal sensing robots while ensuring privacy protection through Federated Learning (FL). The rapid advancement of autonomous vehicles and robotics has escalated the need for efficient and safe navigation algorithms that also support Human-Robot Interaction and Collaboration. However, the integration of data from diverse sensors like cameras, LiDARs, and radars raises concerns about privacy and data security.
In this paper, we introduce Res-FLNet, which harnesses the power of ResNet-50 and LSTM models to achieve robust and privacy-preserving autonomous driving. The ResNet-50 model effectively extracts features from visual input, while LSTM captures sequential dependencies in the multimodal data, enabling more sophisticated learning control algorithms. To tackle privacy issues, we employ Federated Learning, enabling model training to be conducted locally on individual robots without sharing raw data. By aggregating model updates from different robots, the central server learns from collective knowledge while preserving data privacy. Res-FLNet can also facilitate Human-Robot Interaction and Collaboration as it allows robots to share knowledge while preserving privacy.
Our experiments demonstrate the efficacy and privacy preservation of Res-FLNet across four widely-used autonomous driving datasets: KITTI, Waymo Open Dataset, ApolloScape, and BDD100K. Res-FLNet outperforms state-of-the-art methods in terms of accuracy, robustness, and privacy preservation. Moreover, it exhibits promising adaptability and generalization across various autonomous driving scenarios, showcasing its potential for multi-modal sensing robots in complex and dynamic environments.
Res - FLNet提出了一种前沿解决方案,用于在多模态传感机器人的背景下解决自动驾驶任务,同时通过联邦学习(FL)确保隐私保护。自动驾驶车辆和机器人技术的迅速发展,使得对高效且安全的导航算法的需求不断增加,这些算法还需支持人机交互与协作。然而,整合来自摄像头、激光雷达和雷达等不同传感器的数据引发了对隐私和数据安全的担忧。
在本文中,我们介绍了Res - FLNet,它利用ResNet - 50和LSTM模型的力量来实现强大且保护隐私的自动驾驶。ResNet - 50模型有效地从视觉输入中提取特征,而LSTM捕捉多模态数据中的序列依赖性,从而实现更复杂的学习控制算法。为了解决隐私问题,我们采用联邦学习,使模型训练能够在各个机器人本地进行,而无需共享原始数据。通过聚合来自不同机器人的模型更新,中央服务器在保护数据隐私的同时从集体知识中学习。Res - FLNet还可以促进人机交互与协作,因为它允许机器人在保护隐私的同时共享知识。
我们的实验证明了Res - FLNet在四个广泛使用的自动驾驶数据集(KITTI、Waymo开放数据集、ApolloScape和BDD100K)上的有效性和隐私保护能力。Res - FLNet在准确性、鲁棒性和隐私保护方面优于现有方法。此外,它在各种自动驾驶场景中展现出了良好的适应性和泛化能力,展示了其在复杂动态环境中用于多模态传感机器人的潜力。