Fusek Lukáš, Samal Pankaj Kumar, Keresteš Jiří, Khalakhan Ivan, Johánek Viktor, Lykhach Yaroslava, Libuda Jörg, Brummel Olaf, Mysliveček Josef
Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 180 00 Praha 8, Czech Republic.
Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
Phys Chem Chem Phys. 2024 Jan 17;26(3):1630-1639. doi: 10.1039/d3cp03831a.
The electrocatalytic properties of advanced metal-oxide catalysts are often related to a synergistic interplay between multiple active catalyst phases. The structure and chemical nature of these active phases are typically established under reaction conditions, upon interaction of the catalyst with the electrolyte. Here, we present a fundamental surface science (scanning tunneling microscopy, X-ray photoelectron spectroscopy, and low-energy electron diffraction) and electrochemical (cyclic voltammetry) study of CeO(111) nanoislands on Pt(111) in blank alkaline electrolyte (0.1 M KOH) in a potential window between -0.05 and 0.9 V. We observe a size- and preparation-dependent behavior. Large ceria nanoislands prepared at high temperatures exhibit stable redox behavior with Ce/Ce electrooxidation/reduction limited to the surface only. In contrast, ceria nanoislands, smaller than ∼5 nm prepared at a lower temperature, undergo conversion into a fully hydrated phase with Ce/Ce redox transitions, which are extended to the subsurface region. While the formation of adsorbed OH species on Pt depends strongly on the ceria coverage, the formation of adsorbed H on Pt is independent of the ceria coverage. We assign this observation to intercalation of H at the Pt/ceria interface. The intercalated H cannot participate in the hydrogen evolution reaction, resulting in the moderation of this reaction by ceria nanoparticles on Pt.
先进金属氧化物催化剂的电催化性能通常与多个活性催化剂相之间的协同相互作用有关。这些活性相的结构和化学性质通常是在反应条件下,即催化剂与电解质相互作用时确定的。在此,我们展示了一项基础表面科学(扫描隧道显微镜、X射线光电子能谱和低能电子衍射)以及电化学(循环伏安法)研究,该研究针对在空白碱性电解质(0.1 M KOH)中,处于-0.05至0.9 V电位窗口内的Pt(111)上的CeO(111)纳米岛。我们观察到一种尺寸和制备依赖性行为。在高温下制备的大氧化铈纳米岛表现出稳定的氧化还原行为,Ce/Ce的电氧化/还原仅限于表面。相比之下,在较低温度下制备的尺寸小于约5 nm的氧化铈纳米岛会转变为具有Ce/Ce氧化还原转变的完全水合相,这种转变扩展到了亚表面区域。虽然Pt上吸附的OH物种的形成强烈依赖于氧化铈的覆盖度,但Pt上吸附的H的形成与氧化铈的覆盖度无关。我们将这一观察结果归因于H在Pt/氧化铈界面的嵌入。嵌入的H不能参与析氢反应,从而导致Pt上的氧化铈纳米颗粒对该反应起到了缓和作用。