Suppr超能文献

基于疼痛相关电压门控钠离子通道的扩展药物-靶标相互作用网络的机器学习研究。

Machine learning study of the extended drug-target interaction network informed by pain related voltage-gated sodium channels.

机构信息

Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan, P R. China.

Department of Mathematics, Michigan State University, East Lansing, MI, United States.

出版信息

Pain. 2024 Apr 1;165(4):908-921. doi: 10.1097/j.pain.0000000000003089. Epub 2023 Oct 18.

Abstract

Pain is a significant global health issue, and the current treatment options for pain management have limitations in terms of effectiveness, side effects, and potential for addiction. There is a pressing need for improved pain treatments and the development of new drugs. Voltage-gated sodium channels, particularly Nav1.3, Nav1.7, Nav1.8, and Nav1.9, play a crucial role in neuronal excitability and are predominantly expressed in the peripheral nervous system. Targeting these channels may provide a means to treat pain while minimizing central and cardiac adverse effects. In this study, we construct protein-protein interaction (PPI) networks based on pain-related sodium channels and develop a corresponding drug-target interaction network to identify potential lead compounds for pain management. To ensure reliable machine learning predictions, we carefully select 111 inhibitor data sets from a pool of more than 1000 targets in the PPI network. We employ 3 distinct machine learning algorithms combined with advanced natural language processing (NLP)-based embeddings, specifically pretrained transformer and autoencoder representations. Through a systematic screening process, we evaluate the side effects and repurposing potential of more than 150,000 drug candidates targeting Nav1.7 and Nav1.8 sodium channels. In addition, we assess the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of these candidates to identify leads with near-optimal characteristics. Our strategy provides an innovative platform for the pharmacological development of pain treatments, offering the potential for improved efficacy and reduced side effects.

摘要

疼痛是一个全球性的重大健康问题,目前疼痛管理的治疗选择在疗效、副作用和成瘾性方面存在局限性。因此,迫切需要改进疼痛治疗方法并开发新的药物。电压门控钠离子通道,特别是 Nav1.3、Nav1.7、Nav1.8 和 Nav1.9,在神经元兴奋性中发挥着关键作用,主要在周围神经系统中表达。靶向这些通道可能是一种治疗疼痛的方法,同时最大限度地减少中枢和心脏的不良反应。在这项研究中,我们根据与疼痛相关的钠离子通道构建了蛋白质-蛋白质相互作用(PPI)网络,并开发了相应的药物-靶标相互作用网络,以确定潜在的用于疼痛管理的先导化合物。为了确保可靠的机器学习预测,我们从 PPI 网络中 1000 多个靶点的池中仔细选择了 111 个抑制剂数据集。我们使用 3 种不同的机器学习算法,并结合先进的自然语言处理(NLP)-基于嵌入的技术,特别是预训练的转换器和自动编码器表示。通过系统的筛选过程,我们评估了超过 150000 种针对 Nav1.7 和 Nav1.8 钠离子通道的候选药物的副作用和重新定位潜力。此外,我们评估了这些候选药物的 ADMET(吸收、分布、代谢、排泄和毒性)特性,以确定具有近乎最佳特性的先导化合物。我们的策略为疼痛治疗的药理学开发提供了一个创新的平台,有可能提高疗效和减少副作用。

相似文献

引用本文的文献

1
A review of transformer models in drug discovery and beyond.药物发现及其他领域中变压器模型综述。
J Pharm Anal. 2025 Jun;15(6):101081. doi: 10.1016/j.jpha.2024.101081. Epub 2024 Aug 30.

本文引用的文献

2
TIDAL: Topology-Inferred Drug Addiction Learning.TIDAL:拓扑推断药物成瘾学习
J Chem Inf Model. 2023 Mar 13;63(5):1472-1489. doi: 10.1021/acs.jcim.3c00046. Epub 2023 Feb 24.
8
Extracting Predictive Representations from Hundreds of Millions of Molecules.从数亿个分子中提取预测表示。
J Phys Chem Lett. 2021 Nov 11;12(44):10793-10801. doi: 10.1021/acs.jpclett.1c03058. Epub 2021 Nov 1.
9
Machine Learning in Pain Medicine: An Up-To-Date Systematic Review.疼痛医学中的机器学习:最新系统综述
Pain Ther. 2021 Dec;10(2):1067-1084. doi: 10.1007/s40122-021-00324-2. Epub 2021 Sep 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验