Dan Jiadong, Waqar Moaz, Erofeev Ivan, Yao Kui, Wang John, Pennycook Stephen J, Loh N Duane
NUS Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore.
Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
Sci Adv. 2023 Oct 20;9(42):eadj0904. doi: 10.1126/sciadv.adj0904. Epub 2023 Oct 18.
A continuing challenge in atomic resolution microscopy is to identify significant structural motifs and their assembly rules in synthesized materials with limited observations. Here, we propose and validate a simple and effective hybrid generative model capable of predicting unseen domain boundaries in a potassium sodium niobate thin film from only a small number of observations, without expensive first-principles calculations or atomistic simulations of domain growth. Our results demonstrate that complicated domain boundary structures spanning 1 to 100 nanometers can arise from simple interpretable local rules played out probabilistically. We also found previously unobserved, significant, tileable boundary motifs that may affect the piezoelectric response of the material system, and evidence that our system creates domain boundaries with the highest configurational entropy. More broadly, our work shows that simple yet interpretable machine learning models could pave the way to describe and understand the nature and origin of disorder in complex materials, therefore improving functional materials design.
原子分辨率显微镜领域面临的一个持续挑战是,在观测数据有限的情况下,识别合成材料中重要的结构基序及其组装规则。在此,我们提出并验证了一种简单有效的混合生成模型,该模型仅通过少量观测数据就能预测铌酸钠钾薄膜中未观测到的畴界,而无需进行昂贵的第一性原理计算或畴生长的原子模拟。我们的结果表明,跨越1至100纳米的复杂畴界结构可能源于简单且可解释的局部规则的概率性作用。我们还发现了以前未观测到的、重要的、可拼接的边界基序,这些基序可能会影响材料系统的压电响应,并且有证据表明我们的系统创建的畴界具有最高的构型熵。更广泛地说,我们的工作表明,简单但可解释的机器学习模型可以为描述和理解复杂材料中无序的本质和起源铺平道路,从而改进功能材料的设计。