School of Materials Science and Engineering, Peking University, Beijing, China.
School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, China.
Nature. 2023 Mar;615(7950):56-61. doi: 10.1038/s41586-022-05617-w. Epub 2023 Mar 1.
Correlating atomic configurations-specifically, degree of disorder (DOD)-of an amorphous solid with properties is a long-standing riddle in materials science and condensed matter physics, owing to difficulties in determining precise atomic positions in 3D structures. To this end, 2D systems provide insight to the puzzle by allowing straightforward imaging of all atoms. Direct imaging of amorphous monolayer carbon (AMC) grown by laser-assisted depositions has resolved atomic configurations, supporting the modern crystallite view of vitreous solids over random network theory. Nevertheless, a causal link between atomic-scale structures and macroscopic properties remains elusive. Here we report facile tuning of DOD and electrical conductivity in AMC films by varying growth temperatures. Specifically, the pyrolysis threshold temperature is the key to growing variable-range-hopping conductive AMC with medium-range order (MRO), whereas increasing the temperature by 25 °C results in AMC losing MRO and becoming electrically insulating, with an increase in sheet resistance of 10 times. Beyond visualizing highly distorted nanocrystallites embedded in a continuous random network, atomic-resolution electron microscopy shows the absence/presence of MRO and temperature-dependent densities of nanocrystallites, two order parameters proposed to fully describe DOD. Numerical calculations establish the conductivity diagram as a function of these two parameters, directly linking microstructures to electrical properties. Our work represents an important step towards understanding the structure-property relationship of amorphous materials at the fundamental level and paves the way to electronic devices using 2D amorphous materials.
关联非晶态固体中原子构型(具体而言,无序度 (DOD))与性质之间的关系,是材料科学和凝聚态物理中长期存在的难题,这主要是因为在 3D 结构中确定精确的原子位置存在困难。为此,2D 系统为解决这个难题提供了线索,因为它可以直接成像所有原子。通过激光辅助沉积生长的非晶单层碳 (AMC) 的直接成像解决了原子构型问题,支持了玻璃态固体的微晶理论,而不是随机网络理论。然而,原子尺度结构与宏观性质之间的因果关系仍然难以捉摸。在这里,我们报告了通过改变生长温度,在 AMC 薄膜中轻松地调节 DOD 和电导率。具体来说,热解的阈值温度是生长具有中程有序(MRO)的可变范围跳跃导电 AMC 的关键,而将温度升高 25°C 会导致 AMC 失去 MRO 并变为电绝缘,其体电阻增加了 10 倍。除了可视化嵌入在连续无定形网络中的高度扭曲纳米晶之外,原子分辨率电子显微镜还显示了 MRO 的存在/不存在以及纳米晶的温度依赖性密度,这两个序参量被提出用于完全描述 DOD。数值计算建立了作为这两个参数函数的电导率图,直接将微观结构与电特性联系起来。我们的工作代表了在基本层面上理解非晶材料结构-性质关系的重要一步,并为使用二维非晶材料的电子设备铺平了道路。