Suppr超能文献

二维总体熵:概念及其在肺气肿肺部计算机断层扫描中的应用。

Bidimensional ensemble entropy: Concepts and application to emphysema lung computerized tomography scans.

作者信息

Gaudêncio Andreia S, Azami Hamed, Cardoso João M, Vaz Pedro G, Humeau-Heurtier Anne

机构信息

LIBPhys, Department of Physics, University of Coimbra, Coimbra, P-3004 516, Portugal; Univ Angers, LARIS, SFR MATHSTIC, F-49000 Angers, France.

Centre for Addiction and Mental Health, Toronto Dementia Research Alliance, Univ Toronto, Toronto, ON, Canada.

出版信息

Comput Methods Programs Biomed. 2023 Dec;242:107855. doi: 10.1016/j.cmpb.2023.107855. Epub 2023 Oct 12.

Abstract

BACKGROUND AND OBJECTIVE

Bidimensional entropy algorithms provide meaningful quantitative information on image textures. These algorithms have the advantage of relying on well-known one-dimensional entropy measures dedicated to the analysis of time series. However, uni- and bidimensional algorithms require the adjustment of some parameters that influence the obtained results or even findings. To address this, ensemble entropy techniques have recently emerged as a solution for signal analysis, offering greater stability and reduced bias in data patterns during entropy estimation. However, such algorithms have not yet been extended to their two-dimensional forms.

METHODS

We therefore propose six bidimensional algorithms, namely ensemble sample entropy, ensemble permutation entropy, ensemble dispersion entropy, ensemble distribution entropy, and two versions of ensemble fuzzy entropy based on different models or parameters initialization of an entropy algorithm. These new measures are first tested on synthetic images and further applied to a biomedical dataset.

RESULTS

The results suggest that ensemble techniques are able to detect different levels of image dynamics and their degrees of randomness. These methods lead to more stable entropy values (lower coefficients of variations) for the synthetic data. The results also show that these new measures can obtain up to 92.7% accuracy and 88.4% sensitivity when classifying patients with pulmonary emphysema through a k-nearest neighbors algorithm.

CONCLUSIONS

This is a further step towards the potential clinical deployment of bidimensional ensemble approaches to detect different levels of image dynamics and their successful performance on emphysema lung computerized tomography scans. These bidimensional ensemble entropy algorithms have potential to be used in various imaging applications thanks to their ability to distinguish more stable and less biased image patterns compared to their original counterparts.

摘要

背景与目的

二维熵算法可提供有关图像纹理的有意义的定量信息。这些算法的优势在于依赖专门用于时间序列分析的知名一维熵测度。然而,一维和二维算法都需要调整一些会影响所得结果甚至发现的参数。为解决这一问题,最近出现了集成熵技术作为信号分析的一种解决方案,在熵估计过程中能提供更高的稳定性并减少数据模式中的偏差。然而,此类算法尚未扩展到二维形式。

方法

因此,我们提出了六种二维算法,即集成样本熵、集成排列熵、集成离散熵、集成分布熵以及基于熵算法的不同模型或参数初始化的两种版本的集成模糊熵。这些新测度首先在合成图像上进行测试,然后进一步应用于生物医学数据集。

结果

结果表明,集成技术能够检测图像动态的不同水平及其随机程度。对于合成数据,这些方法能得到更稳定的熵值(更低的变异系数)。结果还表明,通过k近邻算法对肺气肿患者进行分类时,这些新测度的准确率可达92.7%,灵敏度可达88.4%。

结论

这是朝着二维集成方法在临床上潜在应用迈出的又一步,该方法可检测图像动态的不同水平,并在肺气肿肺部计算机断层扫描中取得成功。这些二维集成熵算法有潜力用于各种成像应用,因为与原始算法相比,它们能够区分更稳定且偏差更小的图像模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验