Suppr超能文献

高分辨率多探测器CT辅助的肺纤维化组织分析与定量

High resolution multidetector CT-aided tissue analysis and quantification of lung fibrosis.

作者信息

Zavaletta Vanessa A, Bartholmai Brian J, Robb Richard A

机构信息

Mayo Clinic/Foundation, Mayo Clinic College of Medicine, MS1-24, 200 1st Street SW, Rochester, MN 55905, USA.

出版信息

Acad Radiol. 2007 Jul;14(7):772-87. doi: 10.1016/j.acra.2007.03.009.

Abstract

RATIONALE AND OBJECTIVES

Volumetric high-resolution scans can be acquired of the lungs with multidetector CT (MDCT). Such scans have potential to facilitate useful visualization, characterization, and quantification of the extent of diffuse lung diseases, such as usual interstitial pneumonitis or idiopathic pulmonary fibrosis (UIP/IPF). There is a need to objectify, standardize, and improve the accuracy and repeatability of pulmonary disease characterization and quantification from such scans. This article presents a novel texture analysis approach toward classification and quantification of various pathologies present in lungs with UIP/IPF. The approach integrates a texture matching method with histogram feature analysis.

MATERIALS AND METHODS

Patients with moderate UIP/IPF were scanned on a Lightspeed 8-detector GE CT scanner (140 kVp, 250 mAs). Images were reconstructed with 1.25-mm slice thickness in a high-frequency sparing algorithm (BONE) with 50% overlap and a 512 x 512 axial matrix, (0.625 mm(3) voxels). Eighteen scans were used in this study. Each dataset is preprocessed and includes segmentation of the lungs and the bronchovascular trees. Two types of analysis were performed, first an analysis of independent volume of interests (VOIs) and second an analysis of whole-lung datasets. 1) Fourteen of the 18 scans were used to create a database of independent 15 x 15 x 15 cubic voxel VOIs. The VOIs were selected by experts as having greater than 70% of the defined class. The database was composed of: honeycombing (number of VOIs 337), reticular (130), ground glass (148), normal (240), and emphysema (54). This database was used to develop our algorithm. Three progressively challenging classification experiments were designed to test our algorithm. All three experiments were performed using a 10-fold cross-validation method for error estimation. Experiment 1 consisted of a two-class discrimination: normal and abnormal. Experiment 2 consisted of a four-class discrimination: normal, reticular, honeycombing, and emphysema. Experiment 3 consisted of a five-class discrimination: normal, ground glass, reticular, honeycombing, and emphysema. 2) The remaining four scans were used to further test the algorithm on new data in the context of a whole lung analysis. Each of the four datasets was manually segmented by three experts. These datasets included normal, reticular and honeycombing regions and did not include ground glass or emphysema. The accuracy of the classification algorithm was then compared with results from experts.

RESULTS

Independent VOIs: 1) two-class discrimination problem (sensitivity, specificity): normal versus abnormal (92.96%, 93.78%). 2) Four-class discrimination problem: normal (92%, 95%), reticular (86%, 87%), honeycombing (74%, 98%), and emphysema (93%, 98%). 3) Five-class discrimination problem: normal (92%, 95%), ground glass (75%, 89%), reticular (22%, 92%), honeycombing (74%, 91%), and emphysema (94%, 98%). Whole-lung datasets: 1) William's index shows that algorithm classification of lungs agrees with the experts as well as the experts agree with themselves. 2) Student t-test between overlap measures of algorithm and expert (AE) and expert and expert (EE): normal (t = -1.20, P = .230), Reticular (t = -1.44, P = .155), Honeycombing (t = -3.15, P = .003). 3) Lung volumes intraclass correlation: dataset 1 (ICC = 0.9984, F = 0.0007); dataset 2 (ICC = 0.9559, F = 0); dataset 3 (ICC = 0.8623, F= 0.0015); dataset 4 (ICC = 0.7807, F = 0.0136).

CONCLUSIONS

We have demonstrated that our novel method is computationally efficient and produces results comparable to expert radiologic judgment. It is effective in the classification of normal versus abnormal tissue and performs as well as the experts in distinguishing among typical pathologies present in lungs with UIP/IPF. The continuing development of quantitative metrics will improve quantification of disease and provide objective measures of disease progression.

摘要

原理与目的

使用多排螺旋CT(MDCT)可对肺部进行容积性高分辨率扫描。此类扫描有潜力促进对弥漫性肺部疾病(如普通间质性肺炎或特发性肺纤维化(UIP/IPF))范围的有效可视化、特征描述及量化。有必要使肺部疾病特征描述和量化的准确性及可重复性客观化、标准化并加以提高。本文提出一种针对UIP/IPF患者肺部存在的各种病变进行分类和量化的新型纹理分析方法。该方法将纹理匹配方法与直方图特征分析相结合。

材料与方法

对中度UIP/IPF患者使用Lightspeed 8排GE CT扫描仪(140 kVp,250 mAs)进行扫描。图像以1.25毫米的层厚在高频保留算法(BONE)中重建,重叠率为50%,轴向矩阵为512×512,体素大小为0.625立方毫米。本研究共使用了18次扫描。每个数据集都经过预处理,包括肺部和支气管血管树的分割。进行了两种类型的分析,第一种是对独立感兴趣区(VOI)的分析,第二种是对全肺数据集的分析。1)18次扫描中的14次用于创建一个由独立的15×15×15立方体格素VOI组成的数据库。VOI由专家选定,其定义类别占比超过70%。该数据库包括:蜂窝状(VOI数量337个)、网状(130个)、磨玻璃影(148个)、正常(240个)和肺气肿(54个)。此数据库用于开发我们的算法。设计了三个难度逐渐增加的分类实验来测试我们的算法。所有三个实验均采用10折交叉验证法进行误差估计。实验1为两类判别:正常与异常。实验2为四类判别:正常、网状、蜂窝状和肺气肿。实验3为五类判别:正常、磨玻璃影、网状、蜂窝状和肺气肿。2)其余4次扫描用于在全肺分析的背景下对新数据进一步测试该算法。四个数据集中的每一个都由三位专家进行手动分割。这些数据集包括正常、网状和蜂窝状区域,不包括磨玻璃影或肺气肿。然后将分类算法的准确性与专家的结果进行比较。

结果

独立VOI:1)两类判别问题(敏感性、特异性):正常与异常(92.96%,93.78%)。2)四类判别问题:正常(92%,95%)、网状(86%,87%)、蜂窝状(74%,98%)和肺气肿(93%,98%)。3)五类判别问题:正常(92%,95%)、磨玻璃影(75%,89%)、网状(22%,92%)、蜂窝状(74%,91%)和肺气肿(94%,98%)。全肺数据集:1)威廉姆斯指数表明算法对肺部的分类与专家一致,且专家之间也相互一致。2)算法与专家(AE)以及专家与专家(EE)的重叠测量之间的学生t检验:正常(t = -1.20,P = 0.230)、网状(t = -1.44,P = 0.155)、蜂窝状(t = -3.15,P = 0.003)。3)肺容积组内相关性:数据集1(ICC = 0.9984,F = 0.0007);数据集2(ICC = 0.9559,F = 0);数据集3(ICC = 0.8623,F = 0.0015);数据集4(ICC = 0.7807,F = 0.0136)。

结论

我们已证明我们的新方法计算效率高,产生的结果可与专家的放射学判断相媲美。它在正常与异常组织的分类中有效,在区分UIP/IPF患者肺部存在的典型病变方面与专家表现相当。定量指标的持续发展将改善疾病的量化,并提供疾病进展的客观测量方法。

相似文献

1
High resolution multidetector CT-aided tissue analysis and quantification of lung fibrosis.
Acad Radiol. 2007 Jul;14(7):772-87. doi: 10.1016/j.acra.2007.03.009.
2
Computerized detection of diffuse lung disease in MDCT: the usefulness of statistical texture features.
Phys Med Biol. 2009 Nov 21;54(22):6881-99. doi: 10.1088/0031-9155/54/22/009. Epub 2009 Oct 28.
5
Texture-based identification and characterization of interstitial pneumonia patterns in lung multidetector CT.
IEEE Trans Inf Technol Biomed. 2010 May;14(3):675-80. doi: 10.1109/TITB.2009.2036166. Epub 2009 Nov 10.
7
MDCT-based 3-D texture classification of emphysema and early smoking related lung pathologies.
IEEE Trans Med Imaging. 2006 Apr;25(4):464-75. doi: 10.1109/TMI.2006.870889.
9
Automated segmentation of lungs with severe interstitial lung disease in CT.
Med Phys. 2009 Oct;36(10):4592-9. doi: 10.1118/1.3222872.

引用本文的文献

4
Disentangling Computed Tomography Pattern and Extent to Estimate Prognosis in Fibrosing Interstitial Lung Diseases.
Am J Respir Crit Care Med. 2024 May 1;209(9):1058-1059. doi: 10.1164/rccm.202401-0117ED.
5
CALIPER-derived parameters for outcome prediction in idiopathic pulmonary fibrosis.
Eur Radiol. 2023 Oct;33(10):7260-7261. doi: 10.1007/s00330-023-10068-6. Epub 2023 Aug 8.
9
Diagnosis and monitoring of systemic sclerosis-associated interstitial lung disease using high-resolution computed tomography.
J Scleroderma Relat Disord. 2022 Oct;7(3):168-178. doi: 10.1177/23971983211064463. Epub 2022 Jan 3.

本文引用的文献

1
Quantification of emphysema severity by histogram analysis of CT scans.
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):738-44. doi: 10.1007/11566465_91.
2
Two methods for validating brain tissue classifiers.
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):515-22. doi: 10.1007/11566465_64.
3
MDCT-based 3-D texture classification of emphysema and early smoking related lung pathologies.
IEEE Trans Med Imaging. 2006 Apr;25(4):464-75. doi: 10.1109/TMI.2006.870889.
4
Computer analysis of computed tomography scans of the lung: a survey.
IEEE Trans Med Imaging. 2006 Apr;25(4):385-405. doi: 10.1109/TMI.2005.862753.
6
Multi-detector row CT and postprocessing techniques in the assessment of diffuse lung disease.
Radiographics. 2005 Nov-Dec;25(6):1639-52. doi: 10.1148/rg.256055037.
8
Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images.
IEEE Trans Med Imaging. 2003 Aug;22(8):940-50. doi: 10.1109/TMI.2003.815905.
9
An automated approach to quantitative air trapping measurements in mild cystic fibrosis.
Chest. 2003 May;123(5):1655-63. doi: 10.1378/chest.123.5.1655.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验