Suppr超能文献

泰勒濑鱼优化使深度学习算法能够检测葡萄中的农药百分比。

Taylor Remora optimization enabled deep learning algorithms for percentage of pesticide detection in grapes.

机构信息

Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India.

出版信息

Environ Sci Pollut Res Int. 2024 Sep;31(41):53920-53942. doi: 10.1007/s11356-023-30169-5. Epub 2023 Oct 18.

Abstract

In the world, grapes are considered as the most significant fruit, and it comprises various nutrients, like Vitamin C and it is utilized to produce wines and raisins. The major six general grape leaf diseases and pests are brown spots, leaf blight, downy mildew, anthracnose, and black rot. However, the existing manual detection methods are time-consuming and require more efforts. In this paper, an effectual grape leaf disease finding and percentage of pesticide detection approach is devised usingan optimized deep learning scheme. Here, the input image is pre-processed and then, black spot segmentation is done using proposed Taylor Remora Optimization Procedure (TROA). The TROA is the combination of Taylor concept and Remora Optimization Algorithm (ROA). After that, the multi-classification of grape leaf disease is performed to classify the disease as Black rot, Black measles, Isariopsis leaf spot and healthy. Accordingly, the training process of the Deep Neuro-Fuzzy Optimizer (DNFN) is done using Sine Cosine Butterfly Optimization (SCBO). Then, pesticide classification is done using Deep Maxout Network (DMN) and the training of the DMN is done using the Monarch Anti Corona Optimization (MACO) algorithm. Finally, the pesticide percentage level detection is performed using Deep Belief Network (DBN), which is trained by the TROA. The devised scheme obtained highest accuracy of 0.9327, sensitivity of 0.9383, and 0.9429. Thus, this method can assist as an effectual decision provision system for assisting the farmers to find the percentage of pesticide affected in grape leaf diseases.

摘要

在世界范围内,葡萄被认为是最重要的水果之一,它含有多种营养物质,如维生素 C,可用于酿造葡萄酒和葡萄干。主要的六种葡萄叶病包括褐斑病、叶枯病、霜霉病、炭疽病和黑腐病。然而,现有的人工检测方法耗时耗力。本文提出了一种利用优化深度学习方案进行葡萄叶病检测和农药残留检测的有效方法。该方法通过预处理输入图像,使用提出的泰勒鱼群优化算法(TROA)进行黑斑分割,然后对葡萄叶病进行多分类,将病害分为黑腐病、黑痘病、叶斑病和健康。接着,使用正弦余弦蝴蝶优化算法(SCBO)对深度神经模糊优化器(DNFN)进行训练,然后使用深度极大值网络(DMN)进行农药分类,最后使用泰勒鱼群优化算法(TROA)对深度置信网络(DBN)进行训练,以检测农药残留水平。该方案的准确率、灵敏度和特异性分别为 0.9327、0.9383 和 0.9429。因此,该方法可以为农民提供有效的决策支持系统,帮助他们检测葡萄叶病中的农药残留水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验