Suppr超能文献

基于深度学习的双波长激发荧光法对浑浊介质中原卟啉IX的深度图估计

Deep learning based depth map estimation of protoporphyrin IX in turbid media using dual wavelength excitation fluorescence.

作者信息

Imanishi Hinano, Nishimura Takahiro, Shimojo Yu, Awazu Kunio

机构信息

Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan.

Graduate School of Medicine, Osaka Metropolitan University, Asahimachi 1-4-3, Abeno-ku, Osaka 545-8585, Japan.

出版信息

Biomed Opt Express. 2023 Sep 18;14(10):5254-5266. doi: 10.1364/BOE.500022. eCollection 2023 Oct 1.

Abstract

This study presents a depth map estimation of fluorescent objects in turbid media, such as biological tissue based on fluorescence observation by two-wavelength excitation and deep learning-based processing. A U-Net-based convolutional neural network is adapted for fluorophore depth maps from the ratiometric information of the two-wavelength excitation fluorescence. The proposed method offers depth map estimation from wide-field fluorescence images with rapid processing. The feasibility of the proposed method was demonstrated experimentally by estimating the depth map of protoporphyrin IX, a recognized cancer biomarker, at different depths within an optical phantom.

摘要

本研究基于双波长激发荧光观察和深度学习处理,提出了一种用于混浊介质(如生物组织)中荧光物体的深度图估计方法。基于U-Net的卷积神经网络根据双波长激发荧光的比率信息来生成荧光团深度图。该方法能够从宽场荧光图像中快速处理并估计深度图。通过估计光学体模内不同深度处公认的癌症生物标志物原卟啉IX的深度图,实验证明了该方法的可行性。

相似文献

本文引用的文献

3
Quantitative tumor depth determination using dual wavelength excitation fluorescence.使用双波长激发荧光进行肿瘤深度定量测定。
Biomed Opt Express. 2022 Oct 6;13(11):5628-5642. doi: 10.1364/BOE.468059. eCollection 2022 Nov 1.
9
Visualization technologies for 5-ALA-based fluorescence-guided surgeries.基于 5-ALA 的荧光引导手术的可视化技术。
J Neurooncol. 2019 Feb;141(3):495-505. doi: 10.1007/s11060-018-03077-9. Epub 2018 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验