竞争性清除葡萄糖反应性胰岛素临床可转化性的计算机模拟研究

In Silico Investigation of the Clinical Translatability of Competitive Clearance Glucose-Responsive Insulins.

作者信息

Yang Jing Fan, Yang Sungyun, Gong Xun, Bakh Naveed A, Zhang Ge, Wang Allison B, Cherrington Alan D, Weiss Michael A, Strano Michael S

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States.

出版信息

ACS Pharmacol Transl Sci. 2023 Sep 18;6(10):1382-1395. doi: 10.1021/acsptsci.3c00095. eCollection 2023 Oct 13.

Abstract

The glucose-responsive insulin (GRI) MK-2640 from Merck was a pioneer in its class to enter the clinical stage, having demonstrated promising responsiveness in in vitro and preclinical studies via a novel competitive clearance mechanism (CCM). The smaller pharmacokinetic response in humans motivates the development of new predictive, computational tools that can improve the design of therapeutics such as GRIs. Herein, we develop and use a new computational model, IMPACT, based on the intersection of human and animal model glucoregulatory systems, to investigate the clinical translatability of CCM GRIs based on existing preclinical and clinical data of MK-2640 and regular human insulin (RHI). Simulated multi-glycemic clamps not only validated the earlier hypothesis of insufficient glucose-responsive clearance capacity in humans but also uncovered an equally important mismatch between the in vivo competitiveness profile and the physiological glycemic range, which was not observed in animals. Removing the inter-species gap increases the glucose-dependent GRI clearance from 13.0% to beyond 20% for humans and up to 33.3% when both factors were corrected. The intrinsic clearance rate, potency, and distribution volume did not apparently compromise the translation. The analysis also confirms a responsive pharmacokinetics local to the liver. By scanning a large design space for CCM GRIs, we found that the mannose receptor physiology in humans remains limiting even for the most optimally designed candidate. Overall, we show that this computational approach is able to extract quantitative and mechanistic information of value from analysis of preclinical and clinical data to assist future therapeutic discovery and development.

摘要

默克公司的葡萄糖反应性胰岛素(GRI)MK-2640是该类药物中首个进入临床阶段的产品,它通过一种新型竞争清除机制(CCM)在体外和临床前研究中展现出了有前景的反应性。人体中较小的药代动力学反应推动了新的预测性计算工具的开发,这些工具可改进诸如GRI等疗法的设计。在此,我们基于人类和动物模型的葡萄糖调节系统的交叉点开发并使用了一种新的计算模型IMPACT,以根据MK-2640和常规人胰岛素(RHI)的现有临床前和临床数据来研究CCM GRI的临床可转化性。模拟的多血糖钳夹不仅验证了早期关于人体葡萄糖反应性清除能力不足的假设,还揭示了体内竞争特性与生理血糖范围之间同样重要的不匹配,这在动物中未观察到。消除种间差异后,人体中葡萄糖依赖性GRI清除率从13.0%提高到20%以上,若两个因素都得到校正,则可提高到33.3%。内在清除率、效价和分布容积在翻译过程中并未明显受损。分析还证实了肝脏局部的反应性药代动力学。通过扫描CCM GRI的大型设计空间,我们发现即使对于设计最优化的候选药物,人类中的甘露糖受体生理学仍然具有局限性。总体而言,我们表明这种计算方法能够从临床前和临床数据分析中提取有价值的定量和机制信息,以协助未来的治疗发现和开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索