Department of Biological Sciences, Tata Institute of Fundamental Research , Mumbai, Maharashtra, India.
Department of Bioengineering, University of California , San Diego, La Jolla, California, USA.
Microbiol Spectr. 2023 Dec 12;11(6):e0222523. doi: 10.1128/spectrum.02225-23. Epub 2023 Oct 19.
Energy generation pathways are a potential avenue for the development of novel antibiotics. However, bacteria possess remarkable resilience due to the compensatory pathways, which presents a challenge in this direction. NADH, the primary reducing equivalent, can transfer electrons to two distinct types of NADH dehydrogenases. Type I NADH dehydrogenase is an enzyme complex comprising multiple subunits and can generate proton motive force (PMF). Type II NADH dehydrogenase does not pump protons but plays a crucial role in maintaining the turnover of NAD+. To study the adaptive rewiring of energy metabolism, we evolved an mutant lacking type II NADH dehydrogenase. We discovered that by modifying the flux through the tricarboxylic acid (TCA) cycle, could mitigate the growth impairment observed in the absence of type II NADH dehydrogenase. This research provides valuable insights into the intricate mechanisms employed by bacteria to compensate for disruptions in energy metabolism.
能量生成途径是开发新型抗生素的一个潜在途径。然而,由于补偿途径的存在,细菌具有很强的恢复能力,这给这一方向带来了挑战。NADH 是主要的还原当量,可以将电子转移到两种不同类型的 NADH 脱氢酶。I 型 NADH 脱氢酶是一种由多个亚基组成的酶复合物,可以产生质子动力势 (PMF)。II 型 NADH 脱氢酶不泵质子,但在维持 NAD+的周转率方面起着至关重要的作用。为了研究能量代谢的适应性重布线,我们进化出了一个缺乏 II 型 NADH 脱氢酶的 突变体。我们发现,通过改变三羧酸 (TCA) 循环的通量, 可以减轻在缺乏 II 型 NADH 脱氢酶时观察到的生长受损。这项研究为深入了解细菌在能量代谢紊乱时所采用的复杂机制提供了有价值的见解。