Molinari L, Dumermuth G
Neuropsychobiology. 1986;15(3-4):208-18. doi: 10.1159/000118265.
Robust methods for the spectral analysis of time series are briefly reviewed and seen to have applications in the field of EEG. After presenting two simple schemes for outliers (artifacts) generation and discussing their implications for estimation of the spectral density, the robust filtering algorithm of Kleiner et al. [J.R. Statist. Soc. Ser. B, 41: 313-351, 1979] is introduced and shown to work well for simulated data and for true EEG data containing artifacts. A new use of the robust methods for the detection of artifacts and possibly other transients in long-time EEG recordings is suggested and a preliminary implementation illustrated.
本文简要回顾了时间序列频谱分析的稳健方法,并探讨了其在脑电图(EEG)领域的应用。在介绍了两种简单的异常值(伪迹)生成方案并讨论了它们对频谱密度估计的影响之后,引入了Kleiner等人[《皇家统计学会会刊》B辑,41: 313 - 351, 1979]的稳健滤波算法,并证明其对模拟数据以及包含伪迹的真实EEG数据效果良好。本文提出了稳健方法在长时间EEG记录中检测伪迹及可能的其他瞬变信号的新用途,并展示了初步实现。