Department of Mathematics, Brunel University London, Uxbridge, United Kingdom.
Department of Computer Science, University of Warwick, Coventry, United Kingdom.
PLoS One. 2023 Oct 19;18(10):e0292404. doi: 10.1371/journal.pone.0292404. eCollection 2023.
Interventional endeavours in medicine include prediction of a score that parametrises a new subject's susceptibility to a given disease, at the pre-onset stage. Here, for the first time, we provide reliable learning of such a score in the context of the potentially-terminal disease VOD, that often arises after bone marrow transplants. Indeed, the probability of surviving VOD, is correlated with early intervention. In our work, the VOD-score of each patient in a retrospective cohort, is defined as the distance between the (posterior) probability of a random graph variable-given the inter-variable partial correlation matrix of the time series data on variables that represent different aspects of patient physiology-and that given such time series data of an arbitrarily-selected reference patient. Such time series data is recorded from a pre-transplant to a post-transplant time, for each patient in this cohort, though the data available for distinct patients bear differential temporal coverage, owing to differential patient longevities. Each graph is a Soft Random Geometric Graph drawn in a probabilistic metric space, and the computed inter-graph distance is oblivious to the length of the time series data. The VOD-score learnt in this way, and the corresponding pre-transplant parameter vector of each patient in this retrospective cohort, then results in the training data, using which we learn the function that takes VOD-score as its input, and outputs the vector of pre-transplant parameters. We model this function with a vector-variate Gaussian Process, the covariance structure of which is kernel parametrised. Such modelling is easier than if the score variable were the output. Then for any prospective patient, whose pre-transplant variables are known, we learn the VOD-score (and the hyperparameters of the covariance kernel), using Markov Chain Monte Carlo based inference.
医学中的介入性努力包括在疾病发作前阶段预测一个新个体对特定疾病易感性的评分,这里我们首次在潜在致命性疾病 VOD 的背景下提供了这种评分的可靠学习。VOD 通常发生在骨髓移植后。实际上,VOD 存活的概率与早期干预有关。在我们的工作中,回顾性队列中每个患者的 VOD 评分被定义为随机图变量的后验概率之间的距离,该概率是在时间序列数据的变量之间的偏相关矩阵的情况下给定的,该变量代表患者生理的不同方面,以及任意选择的参考患者的时间序列数据。这种时间序列数据是从移植前到移植后记录的,对于队列中的每个患者,尽管不同患者的可用数据具有不同的时间覆盖范围,但由于患者的寿命不同。每个图都是在概率度量空间中绘制的软随机几何图,并且计算的图间距离与时间序列数据的长度无关。以这种方式学习的 VOD 评分,以及该回顾性队列中每个患者的相应移植前参数向量,然后导致使用该方法学习将 VOD 评分作为其输入并输出移植前参数向量的函数的训练数据。我们使用向量变量高斯过程对该函数进行建模,该过程的协方差结构是内核参数化的。这种建模比将评分变量作为输出更容易。然后,对于任何已知移植前变量的前瞻性患者,我们使用基于马尔可夫链蒙特卡罗的推理来学习 VOD 评分(和协方差核的超参数)。