Li Zhen, Sun Xianglang, Zheng Xiaopeng, Li Bo, Gao Danpeng, Zhang Shoufeng, Wu Xin, Li Shuai, Gong Jianqiu, Luther Joseph M, Li Zhong'an, Zhu Zonglong
Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong.
State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.
Science. 2023 Oct 20;382(6668):284-289. doi: 10.1126/science.ade9637. Epub 2023 Oct 19.
P-i-n geometry perovskite solar cells (PSCs) offer simplified fabrication, greater amenability to charge extraction layers, and low-temperature processing over n-i-p counterparts. Self-assembled monolayers (SAMs) can enhance the performance of p-i-n PSCs but ultrathin SAMs can be thermally unstable. We report a thermally robust hole-selective layer comprised of nickel oxide (NiO) nanoparticle film with a surface-anchored (4-(3,11-dimethoxy-7H-dibenzo[c,g]carbazol-7-yl)butyl)phosphonic acid (MeO-4PADBC) SAM that can improve and stabilize the NiO/perovskite interface. The energetic alignment and favorable contact and binding between NiO/MeO-4PADBC and perovskite reduced the voltage deficit of PSCs with various perovskite compositions and led to strong interface toughening effects under thermal stress. The resulting 1.53-electron-volt devices achieved 25.6% certified power conversion efficiency and maintained >90% of their initial efficiency after continuously operating at 65 degrees Celsius for 1200 hours under 1-sun illumination.
P-i-n结构的钙钛矿太阳能电池(PSC)相比n-i-p结构的电池,具有制造工艺简化、对电荷提取层的适应性更强以及可低温处理等优点。自组装单分子层(SAM)能够提高P-i-n结构PSC的性能,但超薄SAM在热稳定性方面可能存在不足。我们报道了一种由氧化镍(NiO)纳米颗粒薄膜组成的热稳定空穴选择性层,该薄膜表面锚定有(4-(3,11-二甲氧基-7H-二苯并[c,g]咔唑-7-基)丁基)膦酸(MeO-4PADBC)SAM,它能够改善并稳定NiO/钙钛矿界面。NiO/MeO-4PADBC与钙钛矿之间的能量排列以及良好的接触和结合,降低了具有不同钙钛矿组成的PSC的电压损失,并在热应力下产生了强烈的界面强化效应。由此制备的1.53电子伏特器件实现了25.6%的认证功率转换效率,并且在1个太阳光照下于65摄氏度连续运行1200小时后,仍保持其初始效率的90%以上。