Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Ophthalmology Department, Universidad de Murcia, Murcia, Spain.
Mol Aspects Med. 2023 Dec;94:101216. doi: 10.1016/j.mam.2023.101216. Epub 2023 Oct 17.
Glaucoma is a complex multifactorial eye disease manifesting in retinal ganglion cell (RGC) death and optic nerve degeneration, ultimately causing irreversible vision loss. Research in recent years has significantly enhanced our understanding of RGC degenerative mechanisms in glaucoma. It is evident that high intraocular pressure (IOP) is not the only contributing factor to glaucoma pathogenesis. The equilibrium of pro-survival and pro-death signalling pathways in the retina strongly influences the function and survival of RGCs and optic nerve axons in glaucoma. Molecular evidence from human retinal tissue analysis and a range of experimental models of glaucoma have significantly contributed to unravelling these mechanisms. Accumulating evidence reveals a wide range of molecular signalling pathways that can operate -either alone or via intricate networks - to induce neurodegeneration. The roles of several molecules, including neurotrophins, interplay of intracellular kinases and phosphates, caveolae and adapter proteins, serine proteases and their inhibitors, nuclear receptors, amyloid beta and tau, and how their dysfunction affects retinal neurons are discussed in this review. We further underscore how anatomical alterations in various animal models exhibiting RGC degeneration and susceptibility to glaucoma-related neuronal damage have helped to characterise molecular mechanisms in glaucoma. In addition, we also present different regulated cell death pathways that play a critical role in RGC degeneration in glaucoma.
青光眼是一种复杂的多因素眼病,表现为视网膜神经节细胞(RGC)死亡和视神经变性,最终导致不可逆转的视力丧失。近年来的研究极大地提高了我们对青光眼 RGC 退行性机制的理解。显然,高眼压(IOP)并不是青光眼发病机制的唯一因素。视网膜中促存活和促死亡信号通路的平衡强烈影响青光眼患者中 RGC 和视神经轴突的功能和存活。来自人类视网膜组织分析和一系列青光眼实验模型的分子证据为揭示这些机制做出了重大贡献。越来越多的证据表明,广泛的分子信号通路可以单独或通过复杂的网络来诱导神经退行性变。本文讨论了几种分子的作用,包括神经营养因子、细胞内激酶和磷酸酯的相互作用、小窝和衔接蛋白、丝氨酸蛋白酶及其抑制剂、核受体、β-淀粉样蛋白和 tau,以及它们的功能障碍如何影响视网膜神经元。我们进一步强调了在表现出 RGC 退化和易患青光眼相关神经元损伤的各种动物模型中观察到的解剖学改变如何有助于阐明青光眼的分子机制。此外,我们还介绍了在青光眼 RGC 退化中起关键作用的不同调控细胞死亡途径。