Suppr超能文献

同时推断浓度-反应曲线的设计。

Designs for the simultaneous inference of concentration-response curves.

机构信息

Department of Statistics, TU Dortmund University, Dortmund, Germany.

出版信息

BMC Bioinformatics. 2023 Oct 19;24(1):393. doi: 10.1186/s12859-023-05526-3.

Abstract

BACKGROUND

An important problem in toxicology in the context of gene expression data is the simultaneous inference of a large number of concentration-response relationships. The quality of the inference substantially depends on the choice of design of the experiments, in particular, on the set of different concentrations, at which observations are taken for the different genes under consideration. As this set has to be the same for all genes, the efficient planning of such experiments is very challenging. We address this problem by determining efficient designs for the simultaneous inference of a large number of concentration-response models. For that purpose, we both construct a D-optimality criterion for simultaneous inference and a K-means procedure which clusters the support points of the locally D-optimal designs of the individual models.

RESULTS

We show that a planning of experiments that addresses the simultaneous inference of a large number of concentration-response relationships yields a substantially more accurate statistical analysis. In particular, we compare the performance of the constructed designs to the ones of other commonly used designs in terms of D-efficiencies and in terms of the quality of the resulting model fits using a real data example dealing with valproic acid. For the quality comparison we perform an extensive simulation study.

CONCLUSIONS

The design maximizing the D-optimality criterion for simultaneous inference improves the inference of the different concentration-response relationships substantially. The design based on the K-means procedure also performs well, whereas a log-equidistant design, which was also included in the analysis, performs poorly in terms of the quality of the simultaneous inference. Based on our findings, the D-optimal design for simultaneous inference should be used for upcoming analyses dealing with high-dimensional gene expression data.

摘要

背景

在基因表达数据的毒理学中,一个重要的问题是同时推断大量浓度-反应关系。推断的质量在很大程度上取决于实验设计的选择,特别是考虑到不同基因观察值的不同浓度集。由于该集合必须对所有基因相同,因此此类实验的有效规划极具挑战性。我们通过确定大量浓度-反应模型同时推断的有效设计来解决此问题。为此,我们构建了同时推断的 D 最优性准则和 K-均值程序,该程序将各个模型的局部 D 最优设计的支持点聚类。

结果

我们表明,针对大量浓度-反应关系的同时推断进行实验规划会产生更准确的统计分析。特别是,我们使用涉及丙戊酸的真实数据示例,根据 D 效率和产生的模型拟合质量来比较所构建设计与其他常用设计的性能。为了进行质量比较,我们进行了广泛的模拟研究。

结论

同时推断的 D 最优性准则最大化的设计可大大改善不同浓度-反应关系的推断。基于 K-均值程序的设计也表现良好,而对数等距设计(也包括在分析中)在同时推断的质量方面表现不佳。根据我们的发现,应在即将进行的涉及高维基因表达数据的分析中使用用于同时推断的 D 最优设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5ac/10588042/14566407aaa7/12859_2023_5526_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验