Suppr超能文献

基于对比学习和迁移学习的多样化排序超材料逆设计

Diverse ranking metamaterial inverse design based on contrastive and transfer learning.

作者信息

Deng Zhengwei, Li Yuxiang, Li Yicheng, Wang Yiyuan, Li Wenjia, Zhu Zheng, Guan Chunying, Shi Jinhui

出版信息

Opt Express. 2023 Sep 25;31(20):32865-32874. doi: 10.1364/OE.502006.

Abstract

Metamaterials, thoughtfully designed, have demonstrated remarkable success in the manipulation of electromagnetic waves. More recently, deep learning can advance the performance in the field of metamaterial inverse design. However, existing inverse design methods based on deep learning often overlook potential trade-offs of optimal design and outcome diversity. To address this issue, in this work we introduce contrastive learning to implement a simple but effective global ranking inverse design framework. Viewing inverse design as spectrum-guided ranking of the candidate structures, our method creates a resemblance relationship of the optical response and metamaterials, enabling the prediction of diverse structures of metamaterials based on the global ranking. Furthermore, we have combined transfer learning to enrich our framework, not limited in prediction of single metamaterial representation. Our work can offer inverse design evaluation and diverse outcomes. The proposed method may shrink the gap between flexibility and accuracy of on-demand design.

摘要

经过精心设计的超材料在电磁波操控方面已取得显著成功。最近,深度学习能够提升超材料逆向设计领域的性能。然而,现有的基于深度学习的逆向设计方法往往忽视了最优设计和结果多样性之间的潜在权衡。为解决这一问题,在本研究中我们引入对比学习来实现一个简单而有效的全局排序逆向设计框架。将逆向设计视为对候选结构进行频谱引导的排序,我们的方法建立了光学响应与超材料之间的相似关系,从而能够基于全局排序预测超材料的多种结构。此外,我们结合了迁移学习来丰富我们的框架,而不仅限于预测单一的超材料表现形式。我们的工作能够提供逆向设计评估和多样的结果。所提出的方法可能会缩小按需设计在灵活性和准确性之间的差距。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验