Hanna Fergal E, Root Alexander J, Hunter Christopher A
Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
Chem Sci. 2023 Sep 29;14(40):11151-11157. doi: 10.1039/d3sc03823h. eCollection 2023 Oct 18.
H-bonding interactions in networks are stabilised by cooperativity, but the relationship between the chemical structures of the interacting functional groups and the thermodynamic consequences is not well-understood. We have used compounds with an intramolecular H-bond between a pyridine H-bond acceptor and an amide NH group to quantify cooperative effects on the H-bond acceptor properties of the amide carbonyl group. H NMR experiments in -octane confirm the presence of the intramolecular H-bond and show that this interaction is intact in the 1 : 1 complex formed with perfluoro--butanol (PFTB). UV-vis absorption titrations were used to measure the relationship between the association constant for formation of this complex and the H-bond acceptor properties of the pyridine involved in the intramolecular H-bond. Electron-donating substituents on the pyridine increase the strength of the intermolecular H-bond between PFTB and the amide. There is a linear relationship between the H-bond acceptor parameter measured for the amide carbonyl group and the H-bond acceptor parameter for the pyridine. The cooperativity parameter determined from this relationship is 0.2, for an amide carbonyl group is increased by one fifth of the value of of an acceptor that interacts with the NH group. This result is reproduced by DFT calculations of H-bond parameters for the individual molecules in the gas phase, which implies that the observed cooperativity can be understood as polarisation of the electron density in the amide π-system in response to formation of a H-bond. The cooperativity parameter measured for the secondary amide H-bond donor and H-bond acceptor is identical, which implies that polarisation of an amide mediates the interaction between an external donor or acceptor in a reciprocal manner.
网络中的氢键相互作用通过协同作用得以稳定,但相互作用的官能团的化学结构与热力学结果之间的关系尚未得到充分理解。我们使用了在吡啶氢键受体和酰胺NH基团之间存在分子内氢键的化合物,以量化对酰胺羰基的氢键受体性质的协同效应。在正辛烷中的1H NMR实验证实了分子内氢键的存在,并表明这种相互作用在与全氟正丁醇(PFTB)形成的1:1配合物中是完整的。紫外可见吸收滴定法用于测量该配合物形成的缔合常数与分子内氢键中涉及的吡啶的氢键受体性质之间的关系。吡啶上的供电子取代基增加了PFTB与酰胺之间的分子间氢键的强度。酰胺羰基的氢键受体参数与吡啶的氢键受体参数之间存在线性关系。从该关系确定的协同参数β为0.2,对于酰胺羰基,β值增加了与NH基团相互作用的受体的β值的五分之一。气相中单个分子的氢键参数的DFT计算再现了该结果,这意味着观察到的协同作用可以理解为酰胺π体系中电子密度响应氢键形成的极化。仲酰胺氢键供体和氢键受体的协同参数β相同,这意味着酰胺的极化以相互的方式介导外部供体或受体之间的相互作用。