Suppr超能文献

一种使用电子健康记录识别免疫球蛋白利用模式的无监督学习方法。

An unsupervised learning approach to identify immunoglobulin utilization patterns using electronic health records.

机构信息

Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

Centre for Health Informatics, Cumming School of Medicine, University of Calgary, Calgary, Canada.

出版信息

Transfusion. 2023 Dec;63(12):2234-2247. doi: 10.1111/trf.17585. Epub 2023 Oct 20.

Abstract

BACKGROUND

Managing Canada's immunoglobulin (Ig) product resource allocation is challenging due to increasing demand, high expenditure, and global shortages. Detection of groups with high utilization rates can help with resource planning for Ig products. This study aims to uncover utilization subgroups among the Ig recipients using electronic health records (EHRs).

METHODS

The study included all Ig recipients (intravenous or subcutaneous) in Calgary from 2014 to 2020, and their EHR data, including blood inventory, recipient demographics, and laboratory test results, were analyzed. Patient clusters were derived based on patient characteristics and laboratory test data using K-means clustering. Clusters were interpreted using descriptive analyses and visualization techniques.

RESULTS

Among 4112 recipients, six clusters were identified. Clusters 1 and 2 comprised 408 (9.9%) and 1272 (30.9%) patients, respectively, contributing to 62.2% and 27.1% of total Ig utilization. Cluster 3 included 1253 (30.5%) patients, with 86.4% of infusions administered in an inpatient setting. Cluster 4, comprising 1034 (25.1%) patients, had a median age of 4 years, while clusters 2-6 were adults with median ages of 46-60. Cluster 5 had 62 (1.5%) patients, with 77.3% infusions occurring in emergency departments. Cluster 6 contained 83 (2.0%) patients receiving subcutaneous Ig treatments.

CONCLUSION

The results identified data-driven segmentations of patients with high Ig utilization rates and patients with high risk for short-term inpatient use. Our report is the first on EHR data-driven clustering of Ig utilization patterns. The findings hold the potential to inform demand forecasting and resource allocation decisions during shortages of Ig products.

摘要

背景

由于需求增加、支出高和全球短缺,管理加拿大的免疫球蛋白 (Ig) 产品资源分配具有挑战性。检测利用率高的群体有助于规划 Ig 产品的资源。本研究旨在使用电子健康记录 (EHR) 发现 Ig 受者的利用亚组。

方法

该研究包括 2014 年至 2020 年卡尔加里的所有 Ig 受者(静脉内或皮下),并分析了他们的 EHR 数据,包括血液库存、受者人口统计学和实验室检测结果。基于患者特征和实验室检测数据,使用 K-均值聚类法得出患者聚类。使用描述性分析和可视化技术解释聚类。

结果

在 4112 名受者中,确定了六个聚类。聚类 1 和 2 分别由 408(9.9%)和 1272(30.9%)名患者组成,分别占总 Ig 利用率的 62.2%和 27.1%。聚类 3 包括 1253(30.5%)名患者,其中 86.4%的输液在住院环境中进行。聚类 4 包括 1034(25.1%)名患者,中位年龄为 4 岁,而聚类 2-6 为成年患者,中位年龄为 46-60 岁。聚类 5 有 62(1.5%)名患者,其中 77.3%的输液发生在急诊科。聚类 6 包含 83(2.0%)名接受皮下 Ig 治疗的患者。

结论

研究结果确定了高 Ig 利用率患者和短期住院高风险患者的基于数据的细分。这是首次关于基于 EHR 数据的 Ig 利用模式聚类的报告。这些发现有可能在 Ig 产品短缺期间为需求预测和资源分配决策提供信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验