文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于追随者-领导者聚类算法(FLCA)的聚类分析综合方法:文献计量分析。

A comprehensive approach for clustering analysis using follower-leading clustering algorithm (FLCA): Bibliometric analysis.

机构信息

Department of Emergency Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan.

Department of Emergency Medicine, Chi-Mei Medical Center, Tainan, Taiwan.

出版信息

Medicine (Baltimore). 2023 Oct 20;102(42):e35156. doi: 10.1097/MD.0000000000035156.


DOI:10.1097/MD.0000000000035156
PMID:37861508
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10589539/
Abstract

BACKGROUND: There are 3 issues in bibliometrics that need to be addressed: The lack of a clear definition for author collaborations in cluster analysis that takes into account collaborations with and without self-connections; The need to develop a simple yet effective clustering algorithm for use in coword analysis, and; The inadequacy of general bibliometrics in regard to comparing research achievements and identifying articles that are worth reading and recommended for readers. The study aimed to put forth a clustering algorithm for cluster analysis (called following leader clustering [FLCA], a follower-leading clustering algorithm), examine the dissimilarities in cluster outcomes when considering collaborations with and without self-connections in cluster analysis, and demonstrate the application of the clustering algorithm in bibliometrics. METHODS: The study involved a search for articles and review articles published in JMIR Medical Informatics between 2016 and 2022, conducted using the Web of Science core collections. To identify author collaborations (ACs) and themes over the past 7 years, the study utilized the FLCA algorithm. With the 3 objectives of; Comparing the results obtained from scenarios with and without self-connections; Applying the FLCA algorithm in ACs and themes, and; Reporting the findings using traditional bibliometric approaches based on counts and citations, and all plots were created using R. RESULTS: The study found a significant difference in cluster outcomes between the 2 scenarios with and without self-connections, with a 53.8% overlap (14 out of the top 20 countries in ACs). The top clusters were led by Yonsei University in South Korea, Grang Luo from the US, and model in institutes, authors, and themes over the past 7 years. The top entities with the most publications in JMIR Medical Informatics were the United States, Yonsei University in South Korea, Medical School, and Grang Luo from the US. CONCLUSION: The FLCA algorithm proposed in this study offers researchers a comprehensive approach to exploring and comprehending the complex connections among authors or keywords. The study suggests that future research on ACs with cluster analysis should employ FLCA and R visualizations.

摘要

背景:文献计量学存在 3 个问题需要解决:在聚类分析中,缺乏考虑有自我连接和无自我连接的合著者合作的明确定义;需要开发一种简单而有效的聚类算法,用于共词分析;以及一般文献计量学在比较研究成果和确定值得读者阅读和推荐的文章方面的不足。本研究旨在提出一种聚类算法(称为跟随领导者聚类[FLCA],一种追随者-领导者聚类算法)用于聚类分析,检查在聚类分析中考虑有自我连接和无自我连接的合著者合作时聚类结果的差异,并展示聚类算法在文献计量学中的应用。

方法:本研究使用 Web of Science 核心集搜索了 2016 年至 2022 年期间在 JMIR 医学信息学上发表的文章和综述文章,以识别过去 7 年的作者合作(AC)和主题,使用 FLCA 算法。研究的 3 个目标是:比较有自我连接和无自我连接的情景的结果;在 AC 和主题中应用 FLCA 算法;使用基于计数和引文的传统文献计量方法报告发现,所有图表均使用 R 创建。

结果:研究发现,在有自我连接和无自我连接的 2 种情景之间,聚类结果存在显著差异,重叠率为 53.8%(AC 排名前 20 位的国家中有 14 个)。顶级聚类由韩国延世大学、美国的 Grang Luo 和过去 7 年的模型研究所、作者和主题引领。在 JMIR 医学信息学上发表文章最多的顶级实体是美国、韩国延世大学、医学院和美国的 Grang Luo。

结论:本研究提出的 FLCA 算法为研究人员提供了一种全面的方法来探索和理解作者或关键字之间的复杂联系。研究建议,未来的 AC 聚类分析研究应采用 FLCA 和 R 可视化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff82/10589539/1d67044b9d3f/medi-102-e35156-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff82/10589539/df24f1379bce/medi-102-e35156-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff82/10589539/16f7f800f0aa/medi-102-e35156-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff82/10589539/ca6df7659471/medi-102-e35156-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff82/10589539/295e542efa79/medi-102-e35156-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff82/10589539/8dbd48dba5ff/medi-102-e35156-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff82/10589539/312aac031cee/medi-102-e35156-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff82/10589539/94a3ba91e59c/medi-102-e35156-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff82/10589539/b7978fbff2ba/medi-102-e35156-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff82/10589539/1d67044b9d3f/medi-102-e35156-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff82/10589539/df24f1379bce/medi-102-e35156-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff82/10589539/16f7f800f0aa/medi-102-e35156-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff82/10589539/ca6df7659471/medi-102-e35156-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff82/10589539/295e542efa79/medi-102-e35156-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff82/10589539/8dbd48dba5ff/medi-102-e35156-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff82/10589539/312aac031cee/medi-102-e35156-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff82/10589539/94a3ba91e59c/medi-102-e35156-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff82/10589539/b7978fbff2ba/medi-102-e35156-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff82/10589539/1d67044b9d3f/medi-102-e35156-g009.jpg

相似文献

[1]
A comprehensive approach for clustering analysis using follower-leading clustering algorithm (FLCA): Bibliometric analysis.

Medicine (Baltimore). 2023-10-20

[2]
Analyzing author collaborations by developing a follower-leader clustering algorithm and identifying top co-authoring countries: Cluster analysis.

Medicine (Baltimore). 2023-7-21

[3]
Visual impact beam plots: Analyzing research profiles and bibliometric metrics using the following-leading clustering algorithm (FLCA).

Medicine (Baltimore). 2023-7-14

[4]
Analyzing fulminant myocarditis research trends and characteristics using the follower-leading clustering algorithm (FLCA): A bibliometric study.

Medicine (Baltimore). 2023-6-30

[5]
A modern approach with follower-leading clustering algorithm for visualizing author collaborations and article themes in skin cancer research: A bibliometric analysis.

Medicine (Baltimore). 2023-11-3

[6]
Differences in productivity and collaboration patterns on spine-related research between neurosurgeons and orthopedic spine surgeons: Bibliometric analysis.

Medicine (Baltimore). 2023-10-20

[7]
Trends and hotspots related to traditional and modern approaches on acupuncture for stroke: A bibliometric and visualization analysis.

Medicine (Baltimore). 2023-12-1

[8]
Developing a novel algorithm for comparing cluster patterns in networks on journal articles during and after COVID-19: Bibliometric analysis.

Medicine (Baltimore). 2024-3-22

[9]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[10]
Evaluating cluster analysis techniques in ChatGPT versus R-language with visualizations of author collaborations and keyword cooccurrences on articles in the Journal of Medicine (Baltimore) 2023: Bibliometric analysis.

Medicine (Baltimore). 2023-12-8

引用本文的文献

[1]
Unexpected aberrant data patterns on slope graphs to examine article characteristics: Say good-bye to the burst bar chart in bibliometrics.

Medicine (Baltimore). 2025-8-29

[2]
Evaluating the dependability of reference-driven citation forecasts amid the COVID-19 pandemic: A bibliometric analysis across diverse journals.

Medicine (Baltimore). 2024-1-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索