文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过开发追随者-领导者聚类算法和识别顶级合作国家来分析作者合作:聚类分析。

Analyzing author collaborations by developing a follower-leader clustering algorithm and identifying top co-authoring countries: Cluster analysis.

机构信息

Department of Cardiology, Chiali Chi-Mei Hospital, Tainan, Taiwan.

Department of Emergency Medicine, Chi-Mei Medical Center, Tainan, Taiwan.

出版信息

Medicine (Baltimore). 2023 Jul 21;102(29):e34158. doi: 10.1097/MD.0000000000034158.


DOI:10.1097/MD.0000000000034158
PMID:37478228
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10662898/
Abstract

BACKGROUND: This study aimed to explore suitable clustering algorithms for author collaborations (ACs) in bibliometrics and investigate which countries frequently coauthored with others in recent years. To achieve this, the study developed a method called the Follower-Leading Clustering Algorithm (FLCA) and used it to analyze ACs and cowords in the Journal of Medicine (Baltimore) from 2020 to 2022. METHODS: This study extracted article metadata from the Web of Science and used the statistical software R to implement FLCA, enabling efficient and reproducible analysis of ACs and cowords in bibliometrics. To determine the countries that easily coauthored with other countries, the study observed the top 20 countries each year and visualized the results using network charts, heatmaps with dendrograms, and Venn diagrams. The study also used chord diagrams to demonstrate the use of FLCA on ACs and cowords in Medicine (Baltimore). RESULTS: The study observed 12,793 articles, including 5081, 4418, and 3294 in 2020, 2021, and 2022, respectively. The results showed that the FLCA algorithm can accurately identify clusters in bibliometrics, and the USA, China, South Korea, Japan, and Spain were the top 5 countries that commonly coauthored with others during 2020 and 2022. Furthermore, the study identified China, Sichuan University, and diagnosis as the leading entities in countries, institutes, and keywords based on ACs and cowords, respectively. The study highlights the advantages of using cluster analysis and visual displays to analyze ACs in Medicine (Baltimore) and their potential application to coword analysis. CONCLUSION: The proposed FLCA algorithm provides researchers with a comprehensive means to explore and understand the intricate connections between authors or keywords. Therefore, the study recommends the use of FLCA and visualizations with R for future research on ACs with cluster analysis.

摘要

背景:本研究旨在探索适用于文献计量学中作者合作(AC)的聚类算法,并研究近年来哪些国家经常与其他国家合作。为此,本研究开发了一种名为追随者-领导者聚类算法(FLCA)的方法,并用于分析 2020 年至 2022 年《巴尔的摩医学杂志》中的 AC 和共词。

方法:本研究从 Web of Science 提取文章元数据,并使用统计软件 R 实现 FLCA,以实现文献计量学中 AC 和共词的高效和可重复分析。为了确定容易与其他国家合作的国家,本研究每年观察前 20 个国家,并使用网络图、带树状图的热图和文氏图可视化结果。本研究还使用和弦图展示了 FLCA 在《巴尔的摩医学杂志》中的 AC 和共词的应用。

结果:本研究观察了 12793 篇文章,包括 2020 年、2021 年和 2022 年的 5081 篇、4418 篇和 3294 篇。结果表明,FLCA 算法可以准确识别文献计量学中的聚类,美国、中国、韩国、日本和西班牙是 2020 年和 2022 年与其他国家合作最多的前 5 个国家。此外,本研究还根据 AC 和共词,分别确定了中国、四川大学和诊断为国家、机构和关键词的主导实体。研究强调了使用聚类分析和可视化显示来分析《巴尔的摩医学杂志》中的 AC 及其在共词分析中的潜在应用的优势。

结论:所提出的 FLCA 算法为研究人员提供了一种全面的方法来探索和理解作者或关键词之间的复杂关系。因此,本研究建议在未来的 AC 聚类分析研究中使用 FLCA 和 R 的可视化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9392/10662898/30b4b59c8f7f/medi-102-e34158-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9392/10662898/177bc1daa777/medi-102-e34158-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9392/10662898/b9649418c184/medi-102-e34158-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9392/10662898/6a3f5afc66a4/medi-102-e34158-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9392/10662898/8ae93bae0c63/medi-102-e34158-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9392/10662898/4aeec04d29c6/medi-102-e34158-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9392/10662898/5ca281bef4da/medi-102-e34158-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9392/10662898/282accaafd16/medi-102-e34158-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9392/10662898/08a939e7bd05/medi-102-e34158-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9392/10662898/30b4b59c8f7f/medi-102-e34158-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9392/10662898/177bc1daa777/medi-102-e34158-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9392/10662898/b9649418c184/medi-102-e34158-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9392/10662898/6a3f5afc66a4/medi-102-e34158-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9392/10662898/8ae93bae0c63/medi-102-e34158-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9392/10662898/4aeec04d29c6/medi-102-e34158-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9392/10662898/5ca281bef4da/medi-102-e34158-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9392/10662898/282accaafd16/medi-102-e34158-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9392/10662898/08a939e7bd05/medi-102-e34158-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9392/10662898/30b4b59c8f7f/medi-102-e34158-g009.jpg

相似文献

[1]
Analyzing author collaborations by developing a follower-leader clustering algorithm and identifying top co-authoring countries: Cluster analysis.

Medicine (Baltimore). 2023-7-21

[2]
A comprehensive approach for clustering analysis using follower-leading clustering algorithm (FLCA): Bibliometric analysis.

Medicine (Baltimore). 2023-10-20

[3]
Analyzing fulminant myocarditis research trends and characteristics using the follower-leading clustering algorithm (FLCA): A bibliometric study.

Medicine (Baltimore). 2023-6-30

[4]
Differences in productivity and collaboration patterns on spine-related research between neurosurgeons and orthopedic spine surgeons: Bibliometric analysis.

Medicine (Baltimore). 2023-10-20

[5]
Evaluating cluster analysis techniques in ChatGPT versus R-language with visualizations of author collaborations and keyword cooccurrences on articles in the Journal of Medicine (Baltimore) 2023: Bibliometric analysis.

Medicine (Baltimore). 2023-12-8

[6]
Visual impact beam plots: Analyzing research profiles and bibliometric metrics using the following-leading clustering algorithm (FLCA).

Medicine (Baltimore). 2023-7-14

[7]
Developing a novel algorithm for comparing cluster patterns in networks on journal articles during and after COVID-19: Bibliometric analysis.

Medicine (Baltimore). 2024-3-22

[8]
Analyzing shifts in age-related macular degeneration research trends since 2014: A bibliometric study with triple-map Sankey diagrams (TMSD).

Medicine (Baltimore). 2024-1-19

[9]
Trends and hotspots related to traditional and modern approaches on acupuncture for stroke: A bibliometric and visualization analysis.

Medicine (Baltimore). 2023-12-1

[10]
Using chord diagrams to explore article themes in 100 top-cited articles citing Hirsch's h-index since 2005: A bibliometric analysis.

Medicine (Baltimore). 2023-2-22

引用本文的文献

[1]
Unexpected aberrant data patterns on slope graphs to examine article characteristics: Say good-bye to the burst bar chart in bibliometrics.

Medicine (Baltimore). 2025-8-29

[2]
Analyzing shifts in age-related macular degeneration research trends since 2014: A bibliometric study with triple-map Sankey diagrams (TMSD).

Medicine (Baltimore). 2024-1-19

[3]
Evaluating the dependability of reference-driven citation forecasts amid the COVID-19 pandemic: A bibliometric analysis across diverse journals.

Medicine (Baltimore). 2024-1-19

[4]
Trends and hotspots related to traditional and modern approaches on acupuncture for stroke: A bibliometric and visualization analysis.

Medicine (Baltimore). 2023-12-1

[5]
Exploring the top-cited literature in telerehabilitation for joint replacement using the descriptive, diagnostic, predictive, and prescriptive analytics model: A thematic and bibliometric analysis.

Medicine (Baltimore). 2023-12-1

[6]
A modern approach with follower-leading clustering algorithm for visualizing author collaborations and article themes in skin cancer research: A bibliometric analysis.

Medicine (Baltimore). 2023-11-3

本文引用的文献

[1]
The research on the treatment of primary immunodeficiency diseases by hematopoietic stem cell transplantation: A bibliometric analysis from 2013 to 2022.

Medicine (Baltimore). 2023-3-31

[2]
Financial toxicity of breast cancer over the last 30 years: A bibliometrics study and visualization analysis via CiteSpace.

Medicine (Baltimore). 2023-3-24

[3]
Evaluating the impact of a CTSA program from 2008 to 2021 through bibliometrics, social network analysis, and altmetrics.

J Clin Transl Sci. 2023-1-11

[4]
The use of radar plots with the Yk-index to identify which authors contributed the most to the journal of Medicine in 2020 and 2021: A bibliometric analysis.

Medicine (Baltimore). 2022-11-11

[5]
The Hirsch-index in self-citation rates with articles in Medicine (Baltimore): Bibliometric analysis of publications in two stages from 2018 to 2021.

Medicine (Baltimore). 2022-11-11

[6]
Citation analysis of the 100 top-cited articles on the topic of hidradenitis suppurativa since 2013 using Sankey diagrams: Bibliometric analysis.

Medicine (Baltimore). 2022-11-4

[7]
A comparison of 3 productive authors' research domains based on sources from articles, cited references and citing articles using social network analysis.

Medicine (Baltimore). 2022-11-4

[8]
Using Sankey diagrams to explore the trend of article citations in the field of bladder cancer: Research achievements in China higher than those in the United States.

Medicine (Baltimore). 2022-8-26

[9]
Bibliometric Analysis of Research on the Use of the Nine Hole Peg Test.

Int J Environ Res Public Health. 2022-8-15

[10]
Global Research Trends on Infertility and Psychology From the Past Two Decades: A Bibliometric and Visualized Study.

Front Endocrinol (Lausanne). 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索