Department of Cardiology, Chiali Chi-Mei Hospital, Tainan, Taiwan.
Department of Emergency Medicine, Chi-Mei Medical Center, Tainan, Taiwan.
Medicine (Baltimore). 2023 Jul 21;102(29):e34158. doi: 10.1097/MD.0000000000034158.
BACKGROUND: This study aimed to explore suitable clustering algorithms for author collaborations (ACs) in bibliometrics and investigate which countries frequently coauthored with others in recent years. To achieve this, the study developed a method called the Follower-Leading Clustering Algorithm (FLCA) and used it to analyze ACs and cowords in the Journal of Medicine (Baltimore) from 2020 to 2022. METHODS: This study extracted article metadata from the Web of Science and used the statistical software R to implement FLCA, enabling efficient and reproducible analysis of ACs and cowords in bibliometrics. To determine the countries that easily coauthored with other countries, the study observed the top 20 countries each year and visualized the results using network charts, heatmaps with dendrograms, and Venn diagrams. The study also used chord diagrams to demonstrate the use of FLCA on ACs and cowords in Medicine (Baltimore). RESULTS: The study observed 12,793 articles, including 5081, 4418, and 3294 in 2020, 2021, and 2022, respectively. The results showed that the FLCA algorithm can accurately identify clusters in bibliometrics, and the USA, China, South Korea, Japan, and Spain were the top 5 countries that commonly coauthored with others during 2020 and 2022. Furthermore, the study identified China, Sichuan University, and diagnosis as the leading entities in countries, institutes, and keywords based on ACs and cowords, respectively. The study highlights the advantages of using cluster analysis and visual displays to analyze ACs in Medicine (Baltimore) and their potential application to coword analysis. CONCLUSION: The proposed FLCA algorithm provides researchers with a comprehensive means to explore and understand the intricate connections between authors or keywords. Therefore, the study recommends the use of FLCA and visualizations with R for future research on ACs with cluster analysis.
背景:本研究旨在探索适用于文献计量学中作者合作(AC)的聚类算法,并研究近年来哪些国家经常与其他国家合作。为此,本研究开发了一种名为追随者-领导者聚类算法(FLCA)的方法,并用于分析 2020 年至 2022 年《巴尔的摩医学杂志》中的 AC 和共词。
方法:本研究从 Web of Science 提取文章元数据,并使用统计软件 R 实现 FLCA,以实现文献计量学中 AC 和共词的高效和可重复分析。为了确定容易与其他国家合作的国家,本研究每年观察前 20 个国家,并使用网络图、带树状图的热图和文氏图可视化结果。本研究还使用和弦图展示了 FLCA 在《巴尔的摩医学杂志》中的 AC 和共词的应用。
结果:本研究观察了 12793 篇文章,包括 2020 年、2021 年和 2022 年的 5081 篇、4418 篇和 3294 篇。结果表明,FLCA 算法可以准确识别文献计量学中的聚类,美国、中国、韩国、日本和西班牙是 2020 年和 2022 年与其他国家合作最多的前 5 个国家。此外,本研究还根据 AC 和共词,分别确定了中国、四川大学和诊断为国家、机构和关键词的主导实体。研究强调了使用聚类分析和可视化显示来分析《巴尔的摩医学杂志》中的 AC 及其在共词分析中的潜在应用的优势。
结论:所提出的 FLCA 算法为研究人员提供了一种全面的方法来探索和理解作者或关键词之间的复杂关系。因此,本研究建议在未来的 AC 聚类分析研究中使用 FLCA 和 R 的可视化。
Medicine (Baltimore). 2023-10-20
Medicine (Baltimore). 2023-3-24
Int J Environ Res Public Health. 2022-8-15
Front Endocrinol (Lausanne). 2022