Suppr超能文献

基于证据的幼鼠和成鼠比较严重度评估。

Evidence-based comparative severity assessment in young and adult mice.

机构信息

Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.

RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.

出版信息

PLoS One. 2023 Oct 20;18(10):e0285429. doi: 10.1371/journal.pone.0285429. eCollection 2023.

Abstract

In animal-based research, welfare assessments are essential for ethical and legal reasons. However, accurate assessment of suffering in laboratory animals is often complicated by the multidimensional character of distress and pain and the associated affective states. The present study aimed to design and validate multidimensional composite measure schemes comprising behavioral and biochemical parameters based on a bioinformatics approach. Published data sets from induced and genetic mouse models of neurological and psychiatric disorders were subjected to a bioinformatics workflow for cross-model analyses. ROC analyses pointed to a model-specific discriminatory power of selected behavioral parameters. Principal component analyses confirmed that the composite measure schemes developed for adult or young mice provided relevant information with the level of group separation reflecting the expected severity levels. Finally, the validity of the composite measure schemes developed for adult and young mice was further confirmed by k-means-based clustering as a basis for severity classification. The classification systems allowed the allocation of individual animals to different severity levels and a direct comparison of animal groups and other models. In conclusion, the bioinformatics approach confirmed the suitability of the composite measure schemes for evidence-based comparative severity assessment in adult and young mice. In particular, we demonstrated that the composite measure schemes provide a basis for an individualized severity classification in control and experimental groups allowing direct comparison of severity levels across different induced or genetic models. An online tool (R package) is provided, allowing the application of the bioinformatics approach to severity assessment data sets regardless of the parameters or models used. This tool can also be used to validate refinement measures.

摘要

在动物实验研究中,福利评估是出于伦理和法律原因所必需的。然而,由于痛苦和疼痛的多维性质以及相关的情感状态,实验室动物的痛苦的准确评估通常变得复杂。本研究旨在设计和验证多维复合测量方案,这些方案基于生物信息学方法包含行为和生化参数。对诱导和遗传的神经和精神疾病小鼠模型的已发表数据集进行了生物信息学工作流程的跨模型分析。ROC 分析指出,选定行为参数具有特定模型的区分能力。主成分分析证实,为成年或幼年小鼠开发的复合测量方案提供了相关信息,其分组分离的水平反映了预期的严重程度水平。最后,通过基于 k-均值的聚类进一步确认了为成年和幼年小鼠开发的复合测量方案的有效性,作为严重程度分类的基础。分类系统允许将个体动物分配到不同的严重程度级别,并可以直接比较动物组和其他模型。总之,生物信息学方法证实了复合测量方案在成年和幼年小鼠中进行基于证据的比较严重程度评估的适用性。特别是,我们证明了复合测量方案为对照组和实验组提供了一种个体化的严重程度分类基础,允许在不同的诱导或遗传模型之间直接比较严重程度水平。提供了一个在线工具(R 包),无论使用的参数或模型如何,都可以将该生物信息学方法应用于严重程度评估数据集。该工具还可以用于验证细化措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ca2/10588901/fa4609b0ad66/pone.0285429.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验