Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, United States.
Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, United States.
Comput Methods Programs Biomed. 2023 Dec;242:107833. doi: 10.1016/j.cmpb.2023.107833. Epub 2023 Oct 14.
Radiotherapy prescriptions currently derive from population-wide guidelines established through large clinical trials. We provide an open-source software tool for patient-specific prescription determination using personalized dose-response curves.
We developed ROE, a plugin to the Computational Environment for Radiotherapy Research to visualize predicted tumor control and normal tissue complication simultaneously, as a function of prescription dose. ROE can be used natively with MATLAB and is additionally made accessible in GNU Octave and Python, eliminating the need for commercial licenses. It provides a curated library of published and validated predictive models and incorporates clinical restrictions on normal tissue outcomes. ROE additionally provides batch-mode tools to evaluate and select among different fractionation schemes and analyze radiotherapy outcomes across patient cohorts.
ROE is an open-source, GPL-copyrighted tool for interactive exploration of the dose-response relationship to aid in radiotherapy planning. We demonstrate its potential clinical relevance in (1) improving patient awareness by quantifying the risks and benefits of a given treatment protocol (2) assessing the potential for dose escalation across patient cohorts and (3) estimating accrual rates of new protocols.
目前,放疗方案源自通过大型临床试验制定的全人群指南。我们提供了一个开源软件工具,用于使用个性化剂量-反应曲线来确定患者特异性处方。
我们开发了 ROE,这是一个 Computational Environment for Radiotherapy Research 的插件,可用于可视化预测的肿瘤控制和正常组织并发症同时作为处方剂量的函数。ROE 可以在 MATLAB 中本地使用,并且还可以在 GNU Octave 和 Python 中使用,从而消除了对商业许可证的需求。它提供了一个经过精心策划的已发表和经过验证的预测模型库,并纳入了对正常组织结果的临床限制。ROE 还提供了批处理模式工具,用于评估和选择不同的分割方案,并分析患者队列中的放疗结果。
ROE 是一个开源的、遵循 GPL 版权协议的工具,用于交互式探索剂量-反应关系,以辅助放疗计划。我们通过以下方面证明了其潜在的临床相关性:(1)通过量化给定治疗方案的风险和益处来提高患者的意识;(2)评估患者队列之间的剂量递增潜力;(3)估计新方案的累积率。