Kolomeisky Eugene B
Department of Physics, University of Virginia, PO Box 400714, Charlottesville, VA 22904-4714, United States of America.
J Phys Condens Matter. 2023 Oct 31;36(5). doi: 10.1088/1361-648X/ad0578.
Excitations in the form of quantized vortex rings are known to exist in superfluidHe at energies and momenta exceeding those of the Landau phonon-roton spectrum. They form a vortex branch of elementary excitations spectrum which is disconnected from the Landau spectrum. Interference of vortex ring excitations determines wake patterns due to uniformly traveling sources in bulk superfluid at low speeds and pressures. The dispersion law of these excitations resembles that of gravity waves on deep water with infrared wave number cutoff. As a result, vortex wake patterns featuring elements of the Kelvin ship wake are predicted. Specifically, at lowest speeds the pattern with fully developed transverse and diverging wavefronts is present. At intermediate speeds transverse wavefronts are absent within a cone whose opening angle increases with the source velocity. At largest speeds only diverging wavefronts confined within a cone whose opening angle decreases with the source velocity are found. When experimentally observed, these changes in appearance of wake patterns serve as indicators of the beginning part of the vortex branch of elementary excitations.
已知在超流氦中,当能量和动量超过朗道声子 - 旋子谱时,会以量子化涡旋环的形式存在激发。它们形成了基本激发谱的一个涡旋分支,该分支与朗道谱不相连。涡旋环激发的干涉决定了低速和低压下在大块超流中均匀移动源产生的尾流模式。这些激发的色散定律类似于具有红外波数截止的深水重力波的色散定律。因此,预测了具有开尔文船尾特征元素的涡旋尾流模式。具体而言,在最低速度下,会出现具有完全发展的横向和发散波前的模式。在中等速度下,在一个开口角度随源速度增加的圆锥内不存在横向波前。在最大速度下,仅发现局限于一个开口角度随源速度减小的圆锥内的发散波前。当通过实验观察时,这些尾流模式外观的变化可作为基本激发的涡旋分支起始部分的指标。