Krstulovic Giorgio, Brachet Marc
Laboratoire de Physique Statistique de l'Ecole Normale Supérieure, associé au CNRS et aux Universités Paris VI et VII, 24 Rue Lhomond, F-75231 Paris, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jun;83(6 Pt 2):066311. doi: 10.1103/PhysRevE.83.066311. Epub 2011 Jun 16.
The statistical equilibria of the (conservative) dynamics of the Gross-Pitaevskii equation (GPE) with a finite range of spatial Fourier modes are characterized using a new algorithm, based on a stochastically forced Ginzburg-Landau equation (SGLE), that directly generates grand-canonical distributions. The SGLE-generated distributions are validated against finite-temperature GPE-thermalized states and exact (low-temperature) results obtained by steepest descent on the (grand-canonical) partition function. A standard finite-temperature second-order λ transition is exhibited. A mechanism of GPE thermalization through a direct cascade of energy is found using initial conditions with mass and energy distributed at large scales. A long transient with partial thermalization at small scales is observed before the system reaches equilibrium. Vortices are shown to disappear as a prelude to final thermalization and their annihilation is related to the contraction of vortex rings due to mutual friction. Increasing the amount of dispersion at the truncation wave number is shown to slow thermalization and vortex annihilation. A bottleneck that produces spontaneous effective self-truncation with partial thermalization is characterized in the limit of large dispersive effects. Metastable counterflow states, with nonzero values of momentum, are generated using the SGLE algorithm. Spontaneous nucleation of the vortex ring is observed and the corresponding Arrhenius law is characterized. Dynamical counterflow effects on vortex evolution are investigated using two exact solutions of the GPE: traveling vortex rings and a motionless crystal-like lattice of vortex lines. Longitudinal effects are produced and measured on the crystal lattice. A dilatation of vortex rings is obtained for counterflows larger than their translational velocity. The vortex ring translational velocity has a dependence on temperature that is an order of magnitude above that of the crystal lattice, an effect that is related to the presence of finite-amplitude Kelvin waves. This anomalous vortex ring velocity is quantitatively reproduced by assuming equipartition of energy of the Kelvin waves. Orders of magnitude are given for the predicted effects in weakly interacting Bose-Einstein condensates and superfluid ^{4}He.
利用一种基于随机强迫金兹堡 - 朗道方程(SGLE)的新算法,对具有有限空间傅里叶模式范围的格罗斯 - 皮塔耶夫斯基方程(GPE)(保守)动力学的统计平衡进行了表征,该算法直接生成巨正则分布。将SGLE生成的分布与有限温度GPE热化态以及通过对(巨正则)配分函数进行最速下降得到的精确(低温)结果进行了验证。展示了标准的有限温度二阶λ转变。利用质量和能量在大尺度上分布的初始条件,发现了一种通过能量直接级联实现GPE热化的机制。在系统达到平衡之前,观察到在小尺度上有部分热化的长时间瞬态。涡旋被证明在最终热化之前消失,并且它们的湮灭与由于相互摩擦导致的涡旋环收缩有关。结果表明,增加截断波数处的色散量会减缓热化和涡旋湮灭。在大色散效应的极限下,表征了一个产生具有部分热化的自发有效自截断的瓶颈。使用SGLE算法生成了具有非零动量值的亚稳态逆流态。观察到涡旋环的自发成核并表征了相应的阿仑尼乌斯定律。利用GPE的两个精确解:行波涡旋环和静止的类晶涡旋线晶格,研究了动态逆流对涡旋演化的影响。在晶格上产生并测量了纵向效应。对于大于其平移速度的逆流,得到了涡旋环的膨胀。涡旋环平移速度对温度的依赖性比晶格高一个数量级,这种效应与有限振幅开尔文波的存在有关。通过假设开尔文波能量的均分,定量地再现了这种异常的涡旋环速度。给出了在弱相互作用玻色 - 爱因斯坦凝聚体和超流^4He中预测效应的数量级。