Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
Int J Biol Macromol. 2023 Dec 31;253(Pt 7):127477. doi: 10.1016/j.ijbiomac.2023.127477. Epub 2023 Oct 18.
Bacterial cellulose (BC), as a natural renewable polymer material, has the advantages of porous nanonetwork structure, high degree of polymerization, high purity, high crystallinity, excellent mechanical properties and biocompatibility. However, BC lacks antibacterial properties, which leads to the limitation of BC material in food packaging and medical materials. In this study, a new antibacterial material using the combination of montmorillonite (MMT), BC and exopolysaccharides (EPS) produced by Weissella confusa H2 was synthesized. Fourier infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analysis showed that BC-EPS, BC-MMT and BC-EPS-MMT composite membranes conformed to the typical type I cellulose structure. Compared to BC membrane, scanning electron microscopy (SEM) showed that the porosity of BC-EPS, BC-MMT and BC-EPS-MMT composite membranes was low and compact. The physical properties of BC-EPS, BC-MTT and BC-EPS-MTT composite membranes showed lower water vapor transmittance. The BC-MTT and BC-EPS-MTT composite membranes exhibit a lower swelling ratio in 120 min. The thermal properties show that BC-EPS, BC-MTT and BC-EPS-MTT composite membranes have higher thermal stability (352 °C, 310 °C, 314 °C). Additionally, both BC-MMT and BC-EPS-MMT demonstrated strong inhibitory effects against various bacterial strains, including Staphylococcus aureus, Escherichia coli, Salmonella paratyphi A, and Bacillus subtilis. The exceptional properties exhibited by composite membranes establishes them as a highly promising option in the field of food packaging and medical material applications.
细菌纤维素(BC)作为一种天然可再生聚合物材料,具有多孔纳米网络结构、聚合度高、纯度高、结晶度高、机械性能优异和生物相容性好等优点。然而,BC 缺乏抗菌性能,这限制了 BC 材料在食品包装和医疗材料中的应用。本研究采用解淀粉欧文氏菌 H2 产生的胞外多糖(EPS)与蒙脱土(MMT)复合,合成了一种新型抗菌材料。傅里叶变换红外光谱(FT-IR)和 X 射线衍射(XRD)分析表明,BC-EPS、BC-MMT 和 BC-EPS-MMT 复合膜符合典型的 I 型纤维素结构。与 BC 膜相比,扫描电子显微镜(SEM)表明 BC-EPS、BC-MMT 和 BC-EPS-MMT 复合膜的孔隙率低且致密。BC-EPS、BC-MTT 和 BC-EPS-MTT 复合膜的物理性能表现出较低的水蒸气透过率。BC-MTT 和 BC-EPS-MTT 复合膜在 120 分钟内的溶胀率较低。热性能表明,BC-EPS、BC-MTT 和 BC-EPS-MTT 复合膜具有更高的热稳定性(352°C、310°C、314°C)。此外,BC-MMT 和 BC-EPS-MMT 对金黄色葡萄球菌、大肠杆菌、甲型副伤寒沙门氏菌和枯草芽孢杆菌等多种细菌菌株均表现出较强的抑制作用。复合膜表现出的优异性能使其成为食品包装和医疗材料应用领域极具前景的选择。