Suppr超能文献

GO-g-CN/BaTiO 三元纳米复合材料的简便合成及其在可见光驱动下对罗丹明 B 的光催化降解性能。

Facile synthesis of a GO-g-CN/BaTiO ternary nanocomposites for visible-light-driven photocatalytic degradation of rhodamine B.

机构信息

Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.

出版信息

Chemosphere. 2023 Dec;345:140479. doi: 10.1016/j.chemosphere.2023.140479. Epub 2023 Oct 18.

Abstract

Photogenerated charge carriers can undergo rapid recombination in conventional photocatalyst systems, reducing their photocatalytic efficiency. To address this bottleneck, a g-CN/BaTiO (CNB) heterojunction composite was decorated with different mass ratios of graphene oxide (GO) to form a novel visible-light responsive ternary GO-g-CN/BaTiO (GOCNB) nanocomposite using a facile fabrication method. The GOCNB photocatalyst exhibited significantly higher light absorption and greater charge transfer than CNB, g-CN, or BaTiO. The photodegradation performance of GOCNB was optimized with a 2% mass loading of GO, and it achieved a degradation rate constant of 14.9 × 10 min for rhodamine B with an efficiency of 94% within 180 min. The rate constant was 8-fold and 6-fold higher than that of bare BaTiO and CNB, respectively. The stronger photocatalytic activity was attributed to the synergistic effect of GO, g-CN, and BaTiO, with g-CN and BaTiO promoting charge transfer within a wider visible light range and GO promoting electron mobility and the photocatalyst's adsorption capacity. In particular, the proposed system maintained the spatial separation of photogenerated electron-hole pairs, which is vital for high photocatalytic activity. This study provides new insights into semiconductor-based photocatalytic systems and suggests a route for more environmentally sustainable technologies.

摘要

光生载流子在传统光催化剂体系中会迅速复合,从而降低其光催化效率。为了解决这一瓶颈问题,采用简便的制备方法,用不同质量比的氧化石墨烯(GO)对 g-CN/BaTiO(CNB)异质结复合材料进行修饰,形成了一种新型的可见光响应的三元 GO-g-CN/BaTiO(GOCNB)纳米复合材料。与 CNB、g-CN 或 BaTiO 相比,GOCNB 光催化剂表现出更高的光吸收和更大的电荷转移能力。通过优化 GO 的质量负载为 2%,GOCNB 的光降解性能达到最佳,罗丹明 B 的降解速率常数为 14.9×10-2 min-1,在 180 min 内的降解效率达到 94%。其速率常数分别是 bare BaTiO 和 CNB 的 8 倍和 6 倍。更强的光催化活性归因于 GO、g-CN 和 BaTiO 的协同作用,g-CN 和 BaTiO 在更宽的可见光范围内促进电荷转移,GO 则促进电子迁移率和光催化剂的吸附能力。特别是,所提出的体系保持了光生电子-空穴对的空间分离,这对于高的光催化活性至关重要。本研究为基于半导体的光催化体系提供了新的见解,并为更环保的可持续技术提供了一种途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验