Stott Lisa A, la Rochelle Armand Drieu, Brown Susan, Osborne Greg, Hutchings Catherine J, Poulter Simon, Bennett Kirstie A, Barnes Matt
Sosei Heptares, Steinmetz Building, Granta Park, Cambridge, United Kingdom (L.A.S., A.D.R., S.B., G.O., S.P., K.A.B., M.B.); and Independent Consultant (C.J.H.)
Sosei Heptares, Steinmetz Building, Granta Park, Cambridge, United Kingdom (L.A.S., A.D.R., S.B., G.O., S.P., K.A.B., M.B.); and Independent Consultant (C.J.H.).
J Pharmacol Exp Ther. 2024 Mar 15;389(1):19-31. doi: 10.1124/jpet.123.001787.
In a typical G protein coupled receptor drug discovery campaign, an in vitro primary functional screening assay is often established in a recombinant system overexpressing the target of interest, which offers advantages with respect to overall throughput and robustness of compound testing. Subsequently, compounds are then progressed into more physiologically relevant but lower throughput ex vivo primary cell assays and finally in vivo studies. Here we describe a dynamic mass redistribution (DMR) assay that has been developed in a format suitable to support medium throughput drug screening in primary human neutrophils. Neutrophils are known to express both CXC chemokine receptor (CXCR) 1 and CXCR2 that are thought to play significant roles in various inflammatory disorders and cancer. Using multiple relevant chemokine ligands and a range of selective and nonselective small and large molecule antagonists that block CXCR1 and CXCR2 responses, we demonstrate distinct pharmacological profiles in neutrophil DMR from those observed in recombinant assays but predictive of activity in neutrophil chemotaxis and CD11b upregulation, a validated target engagement marker previously used in clinical studies of CXCR2 antagonists. The primary human neutrophil DMR cell system is highly reproducible, robust, and less prone to donor variability observed in CD11b and chemotaxis assays and thus provides a unique, more physiologically relevant, and higher throughput assay to support drug discovery and translation to early clinical trials. SIGNIFICANCE STATEMENT: Neutrophil dynamic mass redistribution assays provide a higher throughput screening assay to profile compounds in primary cells earlier in the screening cascade enabling a higher level of confidence in progressing the development of compounds toward the clinic. This is particularly important for chemokine receptors where redundancy contributes to a lack of correlation between recombinant screening assays and primary cells, with the coexpression of related receptors confounding results.
在典型的G蛋白偶联受体药物发现过程中,体外初级功能筛选试验通常在过表达目标靶点的重组系统中进行,这在化合物测试的整体通量和稳健性方面具有优势。随后,化合物进入更具生理相关性但通量较低的离体原代细胞试验,最后进行体内研究。在此,我们描述了一种动态质量再分布(DMR)试验,其开发形式适合支持原代人中性粒细胞的中等通量药物筛选。已知中性粒细胞表达CXC趋化因子受体(CXCR)1和CXCR2,它们在各种炎症性疾病和癌症中被认为发挥着重要作用。使用多种相关趋化因子配体以及一系列阻断CXCR1和CXCR2反应的选择性和非选择性小分子和大分子拮抗剂,我们在中性粒细胞DMR试验中展示了与重组试验中观察到的不同的药理学特征,但可预测中性粒细胞趋化性和CD11b上调中的活性,CD11b上调是先前在CXCR2拮抗剂临床研究中使用的经过验证的靶点结合标记物。原代人中性粒细胞DMR细胞系统具有高度可重复性、稳健性,并且在CD11b和趋化性试验中较少出现供体变异性,因此提供了一种独特的、更具生理相关性且通量更高的试验,以支持药物发现并转化为早期临床试验。意义声明:中性粒细胞动态质量再分布试验提供了一种更高通量的筛选试验,以便在筛选级联的早期阶段对原代细胞中的化合物进行分析,从而在将化合物开发推进到临床阶段时具有更高的信心。这对于趋化因子受体尤为重要,因为冗余性导致重组筛选试验与原代细胞之间缺乏相关性,相关受体的共表达会混淆结果。