Ta Xuan Minh Chau, Trần-Phú Thành, Yuwono Jodie A, Nguyen Thi Kim Anh, Bui Anh Dinh, Truong Thien N, Chang Li-Chun, Magnano Elena, Daiyan Rahman, Simonov Alexandr N, Tricoli Antonio
Nanotechnology Research Laboratory, College of Engineering and Computer Science, The Australian National University, Canberra, ACT, 2601, Australia.
Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, Sydney, NSW, 2006, Australia.
Small. 2024 Sep;20(39):e2304650. doi: 10.1002/smll.202304650. Epub 2023 Oct 20.
Implementation of proton-exchange membrane water electrolyzers for large-scale sustainable hydrogen production requires the replacement of scarce noble-metal anode electrocatalysts with low-cost alternatives. However, such earth-abundant materials often exhibit inadequate stability and/or catalytic activity at low pH, especially at high rates of the anodic oxygen evolution reaction (OER). Here, the authors explore the influence of a dielectric nanoscale-thin oxide layer, namely AlO, SiO, TiO, SnO, and HfO, prepared by atomic layer deposition, on the stability and catalytic activity of low-cost and active but insufficiently stable CoO anodes. It is demonstrated that the ALD layers improve both the stability and activity of CoO following the order of HfO > SnO > TiO > AlO, SiO. An optimal HfO layer thickness of 12 nm enhances the CoO anode durability by more than threefold, achieving over 42 h of continuous electrolysis at 10 mA cm in 1 m HSO electrolyte. Density functional theory is used to investigate the superior performance of HfO, revealing a major role of the HfO|CoO interlayer forces in the stabilization mechanism. These insights offer a potential strategy to engineer earth-abundant materials for low-pH OER catalysts with improved performance from earth-abundant materials for efficient hydrogen production.
为实现大规模可持续制氢而应用质子交换膜水电解槽,需要用低成本替代品取代稀缺的贵金属阳极电催化剂。然而,这类储量丰富的材料在低pH值下往往表现出稳定性不足和/或催化活性不够,尤其是在阳极析氧反应(OER)速率较高时。在此,作者探究了通过原子层沉积制备的介电纳米级薄氧化层(即AlO、SiO、TiO、SnO和HfO)对低成本且活性高但稳定性不足的CoO阳极的稳定性和催化活性的影响。结果表明,原子层沉积层按照HfO>SnO>TiO>AlO、SiO的顺序提高了CoO的稳定性和活性。12纳米的最佳HfO层厚度使CoO阳极的耐久性提高了三倍多,在1米HSO电解液中,在10毫安/平方厘米的电流密度下实现了超过42小时的连续电解。采用密度泛函理论研究了HfO的优异性能,揭示了HfO|CoO层间作用力在稳定机制中的主要作用。这些见解为设计储量丰富的材料提供了一种潜在策略,用于制备性能改进的低pH值OER催化剂,以实现高效制氢。