Suppr超能文献

纳米级二氧化钛涂层提高了一种储量丰富的钴氧化物催化剂在酸性水氧化过程中的稳定性。

Nanoscale TiO Coatings Improve the Stability of an Earth-Abundant Cobalt Oxide Catalyst during Acidic Water Oxidation.

作者信息

Tran-Phu Thanh, Chen Hongjun, Daiyan Rahman, Chatti Manjunath, Liu Borui, Amal Rose, Liu Yun, Macfarlane Douglas R, Simonov Alexandr N, Tricoli Antonio

机构信息

Nanotechnology Research Laboratory, College of Science, Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia.

Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney, NSW 2006, Australia.

出版信息

ACS Appl Mater Interfaces. 2022 Jul 27;14(29):33130-33140. doi: 10.1021/acsami.2c05849. Epub 2022 Jul 15.

Abstract

The large-scale deployment of proton-exchange membrane water electrolyzers for high-throughput sustainable hydrogen production requires transition from precious noble metal anode electrocatalysts to low-cost earth-abundant materials. However, such materials are commonly insufficiently stable and/or catalytically inactive at low pH, and positive potentials required to maintain high rates of the anodic oxygen evolution reaction (OER). To address this, we explore the effects of a dielectric nanoscale-thin layer, constituted of amorphous TiO, on the stability and electrocatalytic activity of nanostructured OER anodes based on low-cost CoO. We demonstrate a direct correlation between the OER performance and the thickness of the atomic layer deposited TiO layers. An optimal TiO layer thickness of 4.4 nm enhances the anode lifetime by a factor of ca. 3, achieving 80 h of continuous electrolysis at pH near zero, while preserving high OER catalytic activity of the bare CoO surface. Thinner and thicker TiO layers decrease the stability and activity, respectively. This is attributed to the pitting of the TiO layer at the optimal thickness, which allows for access to the catalytically active CoO surface while stabilizing it against corrosion. These insights provide directions for the engineering of active and stable composite earth-abundant materials for acidic water splitting for high-throughput hydrogen production.

摘要

大规模部署质子交换膜水电解槽以实现高通量可持续制氢,需要从珍贵的贵金属阳极电催化剂过渡到低成本的储量丰富的地球元素材料。然而,这类材料通常在低pH值下稳定性不足和/或催化活性低,并且需要正电势来维持高阳极析氧反应(OER)速率。为了解决这个问题,我们探索了由非晶TiO构成的介电纳米级薄层对基于低成本CoO的纳米结构OER阳极的稳定性和电催化活性的影响。我们证明了OER性能与原子层沉积TiO层厚度之间的直接相关性。4.4nm的最佳TiO层厚度使阳极寿命提高了约3倍,在接近零的pH值下实现了80小时的连续电解,同时保持了裸CoO表面的高OER催化活性。较薄和较厚的TiO层分别降低了稳定性和活性。这归因于最佳厚度的TiO层出现点蚀,这使得能够接触到催化活性的CoO表面,同时使其免受腐蚀。这些见解为设计用于酸性水分解以实现高通量制氢的活性和稳定的复合储量丰富的地球元素材料提供了方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验