Dept of Psychiatry, Interdisciplinary Centre Psychopathology and Emotion regulation, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (Entrance 24- Triade), Groningen 9700 RB, the Netherlands.
Dept of Psychiatry, Interdisciplinary Centre Psychopathology and Emotion regulation, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (Entrance 24- Triade), Groningen 9700 RB, the Netherlands; Center for Integrative Psychiatry, Lentis, Groningen, the Netherlands.
Psychiatry Res. 2023 Nov;329:115546. doi: 10.1016/j.psychres.2023.115546. Epub 2023 Oct 16.
This study aimed to assess whether adding information on psychological experiences derived from a daily diary to baseline cross-sectional data could improve short- (1-year) and long-term (3-years) prediction of psychopathology and positive psychotic experiences (PEs). We used 90-day daily diary data from 96 individuals in early subclinical risk stages for psychosis. Stepwise linear regression models were built for psychopathology and PEs at 1- and 3-years follow-up, adding: (1) baseline questionnaires, (2) the mean and variance of daily psychological experiences, and (3) individual symptom network density. We assessed whether similar results could be achieved with a subset of the data (7-14- and 30-days). The mean and variance of the diary improved model prediction of short- and long-term psychopathology and PEs, compared to prediction based on baseline questionnaires solely. Similar results were achieved with 7-14- and 30-day subsets. Symptom network density did not improve model prediction except for short-term prediction of PEs. Simple metrics, i.e., the mean and variance from 7 to 14 days of daily psychological experiences assessments, can improve short- and long-term prediction of both psychopathology and PEs in individuals in early subclinical stages for psychosis. Diary data could be a valuable addition to clinical risk prediction models for psychopathology development.
本研究旨在评估在基线横断面数据中加入源自日常日记的心理体验信息,是否能提高短期(1 年)和长期(3 年)对精神病理学和阳性精神病体验(PEs)的预测能力。我们使用了 96 名处于精神病早期亚临床风险阶段个体的 90 天日常日记数据。我们为 1 年和 3 年随访时的精神病理学和 PEs 构建了逐步线性回归模型,分别添加了:(1)基线问卷;(2)日常心理体验的均值和方差;(3)个体症状网络密度。我们评估了仅使用基线问卷进行预测,以及使用数据子集(7-14 天和 30 天)能否得出类似的结果。与仅基于基线问卷的预测相比,日记的均值和方差提高了短期和长期精神病理学和 PEs 的模型预测能力。使用 7-14 天和 30 天的子集也能得出类似的结果。除了短期 PEs 的预测外,症状网络密度并没有改善模型预测。简单的指标,如 7-14 天日常心理体验评估的均值和方差,可以提高精神病早期亚临床个体的短期和长期精神病理学和 PEs 的预测能力。日记数据可能是精神病发展临床风险预测模型的有价值补充。