School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 639798, Singapore.
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China.
Acta Biomater. 2023 Dec;172:175-187. doi: 10.1016/j.actbio.2023.10.016. Epub 2023 Oct 20.
Fast-dissolving microneedles (DMNs) hold significant promise for transdermal drug delivery, offering improved patient compliance, biocompatibility, and functional adaptability for various therapeutic purposes. However, the mechanical strength of the biodegradable polymers used in DMNs often proves insufficient for effective penetration into human skin, especially under high humidity conditions. While many composite strategies have been developed to reinforce polymer-based DMNs, simple mixing of the reinforcements with polymers often results in ineffective penetration due to inhomogeneous dispersion of the reinforcements and the formation of undesired micropores. In response to this challenge, this study aimed to enhance the mechanical performance of hyaluronic acid (HA)-based microneedles (MNs), one of the most commonly used DMN systems. We introduced in situ precipitation of silica nanoparticles (Si) into the HA matrix in conjunction with conventional micromolding. The precipitated silica nanoparticles were uniformly distributed, forming an interconnected network within the HA matrix. Experimental results demonstrated that the mechanical properties of the HA-Si composite MNs with up to 20 vol% Si significantly improved, leading to higher penetration efficiency compared to pure HA MNs, while maintaining structural integrity without any critical defects. The composite MNs also showed reduced degradation rates and preserved their drug delivery capabilities and biocompatibility. Thus, the developed HA-Si composite MNs present a promising solution for efficient transdermal drug delivery and address the mechanical limitations inherent in DMN systems. STATEMENT OF SIGNIFICANCE: HA-Si composite dissolving microneedle (DMN) systems were successfully fabricated through in situ precipitation and conventional micromolding processes. The precipitated silica nanoparticles formed an interconnected network within the HA matrix, ranging in size from 25 to 230 nm. The optimal silica content for HA-Si composite MN systems should be up to 20 % by volume to maintain structural integrity and mechanical properties. HA-Si composite MNs with up to 20 % Si showed improved penetration efficiency and reduced degradation rates compared to pure HA MNs, thereby expanding the operational window. The HA-Si composite MNs retained good drug delivery capabilities and biocompatibility.
速溶微针 (DMN) 在透皮给药方面具有重要意义,可提高患者顺应性、生物相容性和各种治疗目的的功能适应性。然而,DMN 中使用的可生物降解聚合物的机械强度通常不足以有效穿透人体皮肤,尤其是在高湿度条件下。尽管已经开发出许多复合策略来增强基于聚合物的 DMN,但由于增强剂的不均匀分散和形成不理想的微孔,简单地将增强剂与聚合物混合通常会导致穿透效果不佳。针对这一挑战,本研究旨在提高最常用的 DMN 系统之一的透明质酸 (HA) 基微针 (MN) 的机械性能。我们在传统微成型的同时,将二氧化硅纳米粒子 (Si) 原位沉淀到 HA 基质中。沉淀的二氧化硅纳米粒子均匀分布,在 HA 基质内形成相互连接的网络。实验结果表明,高达 20 体积% Si 的 HA-Si 复合 MN 的机械性能显著提高,与纯 HA MN 相比,穿透效率更高,同时在没有任何关键缺陷的情况下保持结构完整性。复合 MN 的降解速率也降低,并保持其药物输送能力和生物相容性。因此,所开发的 HA-Si 复合 MN 为高效透皮药物输送提供了有前途的解决方案,并解决了 DMN 系统固有的机械限制。
通过原位沉淀和传统微成型工艺成功制备了 HA-Si 复合溶解微针 (DMN) 系统。沉淀的二氧化硅纳米粒子在 HA 基质内形成相互连接的网络,尺寸范围为 25 至 230nm。HA-Si 复合 MN 系统的最佳硅含量应为 20 体积%,以保持结构完整性和机械性能。与纯 HA MN 相比,高达 20 体积% Si 的 HA-Si 复合 MN 显示出改善的穿透效率和降低的降解速率,从而扩大了操作窗口。HA-Si 复合 MN 保留了良好的药物输送能力和生物相容性。