Suppr超能文献

基于 2-苯基喹唑啉的 F 标记 CYP1B1 PET 示踪剂的设计、合成与评价。

Design, Synthesis, and Evaluation of F-Labeling CYP1B1 PET Tracer Based on 2-Phenylquinazolin.

机构信息

Department of Radiation Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.

Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.

出版信息

Bioorg Med Chem Lett. 2023 Nov 15;96:129533. doi: 10.1016/j.bmcl.2023.129533. Epub 2023 Oct 21.

Abstract

Cytochrome P450 (CYP)1B1 has been identified to be specifically overexpressed in several solid tumors, thus it's a potential target for the detection of tumors. Based on the 2-Phenylquinazolin CYP1B1 inhibitors, we designed and synthesized several positron emission computed tomography (PET) imaging probes targeting CYP1B1. Through IC determinations, most of these probes exhibited good affinity and selectivity to CYP1B1. Considering their affinity, solubility, and their F labeling methods, we chose compound 5c as the best candidate. The F radiolabeling of [F] 5c was easy to handle with good radiolabeling yield and radiochemical purity. In vitro and in vivo stability study indicated that probe [F]5c has good stability. In cell binding assay, [F]5c could be specifically taken up by tumor cells, especially HCT-116 cells. Although the tumor-blood (T/B) and tumor-muscle (T/M) values and PET imaging results were unsatisfied, it is still possible to develop PET probes targeting CYP1B1 by structural modification on the basis of 5c in the future.

摘要

细胞色素 P450(CYP)1B1 在几种实体瘤中特异性过表达,因此它是肿瘤检测的潜在靶点。基于 2-苯基喹唑啉 CYP1B1 抑制剂,我们设计并合成了几种针对 CYP1B1 的正电子发射断层扫描(PET)成像探针。通过 IC 测定,这些探针大多数对 CYP1B1 表现出良好的亲和力和选择性。考虑到它们的亲和力、溶解度和 F 标记方法,我们选择化合物 5c 作为最佳候选物。[F]5c 的 F 放射性标记易于处理,具有良好的放射性标记产率和放射化学纯度。体外和体内稳定性研究表明探针[F]5c 具有良好的稳定性。在细胞结合实验中,[F]5c 可以被肿瘤细胞,特别是 HCT-116 细胞特异性摄取。尽管肿瘤-血液 (T/B) 和肿瘤-肌肉 (T/M) 值和 PET 成像结果不理想,但仍有可能在 5c 的基础上对结构进行修饰,开发针对 CYP1B1 的 PET 探针。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验