Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.
Department of Genetic Research & Bioinformatics, Norwegian Institute of Public Health, Bergen, Norway; The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, Bergen, Norway.
Neurochem Int. 2023 Dec;171:105629. doi: 10.1016/j.neuint.2023.105629. Epub 2023 Oct 20.
Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by mutations in the phenylalanine hydroxylase (PAH) gene, resulting in phenylalanine accumulation and impaired tyrosine production. In Tyrosinemia type 1 (TYRSN1) mutations affect fumarylacetoacetate hydrolase, leading to accumulation of toxic intermediates of tyrosine catabolism. Treatment of TYRSN1 with nitisinone results in extreme tissue levels of tyrosine. Although PKU and TYRSN1 have opposite effects on tyrosine levels, both conditions have been associated with neuro-psychiatric symptoms typically present in ADHD, possibly indicating an impaired dopamine (DA) synthesis. However, concrete in vivo data on the possible molecular basis for disrupted DA production under disease mimicking conditions have been lacking. In pursuit to uncover associated molecular mechanisms, we exposed an established, DA producing cell line (PC12) to different concentrations of phenylalanine and tyrosine in culture media. We measured the effects on viability, proteomic composition, tyrosine, DA and tyrosine hydroxylase (TH) levels and TH phosphorylation. TH catalyzes the rate-limiting step in DA synthesis. High extracellular levels of phenylalanine depleted cells of intracellular tyrosine and DA. Compared to physiological levels (75 μM), either low (35 μM) or high concentrations of tyrosine (275 or 835 μM) decreased cellular DA, TH protein, and its phosphorylation levels. Using deep proteomic analysis, we identified multiple proteins, biological processes and pathways that were altered, including enzymes and transporters involved in amino acid metabolism. Using this information and published data, we developed a mathematical model to predict how extracellular levels of aromatic amino acids can affect the cellular synthesis of DA via different mechanisms. Together, these data provide new information about the normal regulation of neurotransmitter synthesis and how this may be altered in neurometabolic disorders, such as PKU and TYRSN1, with implications for the treatment of cognitive symptoms resulting from comorbid neurodevelopmental disorders.
苯丙酮尿症 (PKU) 是一种常染色体隐性遗传代谢疾病,由苯丙氨酸羟化酶 (PAH) 基因的突变引起,导致苯丙氨酸积累和酪氨酸生成受损。在酪氨酸血症 1 型 (TYRSN1) 中,突变影响延胡索酰乙酰乙酸水解酶,导致酪氨酸分解代谢的毒性中间产物积累。用尼替西农治疗 TYRSN1 会导致组织中酪氨酸水平极高。尽管 PKU 和 TYRSN1 对酪氨酸水平有相反的影响,但这两种情况都与 ADHD 中常见的神经精神症状有关,这可能表明多巴胺 (DA) 合成受损。然而,在疾病模拟条件下,关于 DA 产生受损的可能分子基础的具体体内数据一直缺乏。为了揭示相关的分子机制,我们在培养物中用不同浓度的苯丙氨酸和酪氨酸暴露于已建立的多巴胺产生细胞系 (PC12)。我们测量了对活力、蛋白质组组成、酪氨酸、DA 和酪氨酸羟化酶 (TH) 水平以及 TH 磷酸化的影响。TH 催化 DA 合成的限速步骤。细胞外高水平的苯丙氨酸使细胞内的酪氨酸和 DA 耗竭。与生理水平 (75 μM) 相比,低浓度 (35 μM) 或高浓度酪氨酸 (275 或 835 μM) 均降低了细胞内 DA、TH 蛋白及其磷酸化水平。通过深度蛋白质组分析,我们确定了多个被改变的蛋白质、生物过程和途径,包括参与氨基酸代谢的酶和转运体。利用这些信息和已发表的数据,我们开发了一个数学模型,以预测细胞外芳香族氨基酸水平如何通过不同的机制影响细胞内 DA 的合成。这些数据共同提供了有关神经递质合成正常调节的新信息,以及在苯丙酮尿症和酪氨酸血症 1 型等神经代谢疾病中,这可能如何改变,这对治疗因共病神经发育障碍引起的认知症状具有重要意义。