Suppr超能文献

蛋白质动力学控制人工氧转运蛋白的氧亚铁状态寿命。

Protein dynamics govern the oxyferrous state lifetime of an artificial oxygen transport protein.

机构信息

Department of Physics, The City College of New York, New York, New York.

Department of Chemistry, University of Missouri, Columbia, Missouri.

出版信息

Biophys J. 2023 Nov 21;122(22):4440-4450. doi: 10.1016/j.bpj.2023.10.022. Epub 2023 Oct 20.

Abstract

It has long been known that the alteration of protein side chains that occlude or expose the heme cofactor to water can greatly affect the stability of the oxyferrous heme state. Here, we demonstrate that the rate of dynamically driven water penetration into the core of an artificial oxygen transport protein also correlates with oxyferrous state lifetime by reducing global dynamics, without altering the structure of the active site, via the simple linking of the two monomers in a homodimeric artificial oxygen transport protein using a glycine-rich loop. The tethering of these two helices does not significantly affect the active site structure, pentacoordinate heme-binding affinity, reduction potential, or gaseous ligand affinity. It does, however, significantly reduce the hydration of the protein core, as demonstrated by resonance Raman spectroscopy, backbone amide hydrogen exchange, and pKa shifts in buried histidine side chains. This further destabilizes the charge-buried entatic state and nearly triples the oxyferrous state lifetime. These data are the first direct evidence that dynamically driven water penetration is a rate-limiting step in the oxidation of these complexes. It furthermore demonstrates that structural rigidity that limits water penetration is a critical design feature in metalloenzyme construction and provides an explanation for both the failures and successes of earlier attempts to create oxygen-binding proteins.

摘要

长期以来,人们一直知道改变侧链,使血红素辅基暴露或隐藏在水中,会极大地影响氧合亚铁血红素状态的稳定性。在这里,我们通过使用富含甘氨酸的环将同源二聚体人工氧转运蛋白中的两个单体简单连接,来降低全局动力学而不改变活性部位的结构,从而证明了动态驱动的水渗透到人工氧转运蛋白核心的速率也与氧合亚铁状态的寿命相关。这种连接两个螺旋的方法不会显著影响活性部位结构、五配位血红素结合亲和力、还原电位或气态配体亲和力。然而,它确实显著降低了蛋白质核心的水合作用,这可以通过共振拉曼光谱、骨架酰胺氢交换和埋藏组氨酸侧链的 pKa 位移来证明。这进一步使电荷埋藏的紧张状态失稳,并将氧合亚铁状态的寿命缩短近三倍。这些数据是动态驱动的水渗透是这些配合物氧化的限速步骤的第一个直接证据。此外,它还表明,限制水渗透的结构刚性是金属酶构建中的一个关键设计特征,并为早期创造氧结合蛋白的失败和成功提供了一个解释。

相似文献

本文引用的文献

2
Tailorable Tetrahelical Bundles as a Toolkit for Redox Studies.可定制的四螺旋束作为氧化还原研究的工具包。
J Phys Chem B. 2022 Oct 20;126(41):8177-8187. doi: 10.1021/acs.jpcb.2c05119. Epub 2022 Oct 11.
8
Rational design of a zinc phthalocyanine binding protein.锌酞菁结合蛋白的合理设计。
J Struct Biol. 2014 Feb;185(2):178-85. doi: 10.1016/j.jsb.2013.06.009. Epub 2013 Jul 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验