Suppr超能文献

简便构建具有优异微波吸收性能的TiCT/TiO@C异质结构。

Facile constructing TiCT/TiO@C heterostructures for excellent microwave absorption properties.

作者信息

Yan Huying, Guo Yang, Bai Xingzhi, Qi Jiawei, Lu Haipeng

机构信息

National Engineering Research Center of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.

National Engineering Research Center of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Electrical and Information Engineering, University of Panzhihua, Panzhihua 617000, China.

出版信息

J Colloid Interface Sci. 2024 Jan 15;654(Pt B):1483-1491. doi: 10.1016/j.jcis.2023.10.076. Epub 2023 Oct 20.

Abstract

Optimizing and enhancing the performance of electromagnetic wave (EMW) absorption materials relies on the modification of their composition and structure through heterogeneous interface engineering. TiCT's high conductivity results in an impedance mismatch, which hinders efficient EMW absorption. Herein, a one-step catalytic chemical vapor deposition (CCVD) method is used to construct the TiCT/TiO@C heterogeneous structure. Upon annealing at 500 °C, amorphous carbon is uniformly deposited on the TiCT surface, thereby incorporating the scale-like TiO generated during the process. The inclusion of the amorphous carbon layer and TiO reduces the substrate's conductivity, achieving optimized impedance matching. Additionally, building heterogeneous interfaces between TiCT, TiO, and C enriches multiple loss mechanisms involving dipole and interfacial polarization, ultimately enabling optimal EMW absorption performance. The minimum reflection loss (RL) value of TiCT/TiO@C-500 is -53.12 dB when its thickness and frequency are 1.15 mm and 13.80 GHz, respectively. Moreover, thermal infrared imaging confirms that coatings fabricated using TiCT/TiO@C-500 demonstrate a favorable heat dissipation rate, validating its effectiveness in addressing the challenge of efficient heat dissipation in electronic devices. This study significantly contributes to the progress of two-dimensional (2D) materials, enabling high-performance EMW absorption and expanding their applications in complex scenarios.

摘要

优化和提高电磁波(EMW)吸收材料的性能依赖于通过异质界面工程对其组成和结构进行改性。TiCT的高电导率导致阻抗失配,这阻碍了有效的EMW吸收。在此,采用一步催化化学气相沉积(CCVD)方法构建TiCT/TiO@C异质结构。在500℃退火后,无定形碳均匀沉积在TiCT表面,从而纳入了该过程中生成的片状TiO。无定形碳层和TiO的加入降低了基底的电导率,实现了优化的阻抗匹配。此外,在TiCT、TiO和C之间构建异质界面丰富了包括偶极和界面极化在内的多种损耗机制,最终实现了最佳的EMW吸收性能。当TiCT/TiO@C-500的厚度和频率分别为1.15mm和13.80GHz时,其最小反射损耗(RL)值为-53.12dB。此外,热红外成像证实,使用TiCT/TiO@C-500制备的涂层表现出良好的散热速率,验证了其在解决电子设备高效散热挑战方面的有效性。本研究对二维(2D)材料的进展做出了重大贡献,实现了高性能EMW吸收并扩展了其在复杂场景中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验