High-Field MR center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria.
Magn Reson Med. 2024 Feb;91(2):443-465. doi: 10.1002/mrm.29799. Epub 2023 Oct 23.
In MRI, the magnetization of nuclear spins is spatially encoded with linear gradients and radiofrequency receivers sensitivity profiles to produce images, which inherently leads to a long scan time. Cartesian MRI, as widely adopted for clinical scans, can be accelerated with parallel imaging and rapid magnetic field modulation during signal readout. Here, by using an 8-channel local coil array, the modulation scheme optimized for sampling efficiency is investigated to speed up 2D Cartesian scans.
An 8-channel local coil array is made to carry sinusoidal currents during signal readout to accelerate 2D Cartesian scans. An MRI sampling theory based on reproducing kernel Hilbert space is exploited to visualize the efficiency of nonlinear encoding in arbitrary sampling duration. A field calibration method using current monitors for local coils and the ESPIRiT algorithm is proposed to facilitate image reconstruction. Image acceleration with various modulation field shapes, aliasing control, and distinct modulation frequencies are scrutinized to find an optimized modulation scheme. A safety evaluation is conducted. In vivo 2D Cartesian scans are accelerated by the local coils.
For 2D Cartesian MRI, the optimal modulation field by this local array converges to a nearly linear gradient field. With the field calibration technique, it accelerates the in vivo scans (i.e., proved safe) by threefold and eightfold free of visible artifacts, without and with SENSE, respectively.
The nonlinear encoding analysis tool, the field calibration method, the safety evaluation procedures, and the in vivo reconstructed scans make significant steps to push MRI speed further with the local coil array.
在 MRI 中,通过线性梯度和射频接收器灵敏度分布对核自旋的磁化进行空间编码,以产生图像,这固有地导致扫描时间长。笛卡尔 MRI 作为广泛应用于临床扫描的方法,可以通过并行成像和在信号读取过程中快速磁场调制来加速。在这里,通过使用 8 通道局部线圈阵列,研究了优化采样效率的调制方案,以加速 2D 笛卡尔扫描。
在信号读取期间,使用 8 通道局部线圈阵列产生正弦电流,以加速 2D 笛卡尔扫描。利用基于再生核希尔伯特空间的 MRI 采样理论,可视化任意采样持续时间中非线性编码的效率。提出了一种使用局部线圈电流监视器和 ESPIRiT 算法的场校准方法,以方便图像重建。研究了各种调制场形状、混叠控制和不同调制频率的图像加速,以找到优化的调制方案。进行了安全性评估。使用局部线圈对体内 2D 笛卡尔扫描进行加速。
对于 2D 笛卡尔 MRI,该局部阵列的最佳调制场趋于近乎线性梯度场。通过场校准技术,它分别在没有和有 SENSE 的情况下,将体内扫描(即证明是安全的)加速了三倍和八倍,没有可见伪影。
非线性编码分析工具、场校准方法、安全性评估程序以及体内重建扫描,为使用局部线圈阵列进一步推动 MRI 速度迈出了重要的一步。