Suppr超能文献

迈向提升物联网传感器数据质量以实现智能鱼菜共生系统产量预测

Towards an improved internet of things sensors data quality for a smart aquaponics system yield prediction.

作者信息

Eneh A H, Udanor C N, Ossai N I, Aneke S O, Ugwoke P O, Obayi A A, Ugwuishiwu C H, Okereke G E

机构信息

Department of Computer Science, University of Nigeria, Nigeria.

Department of Zoology & Environmental Biology, University of Nigeria, Nigeria.

出版信息

MethodsX. 2023 Oct 11;11:102436. doi: 10.1016/j.mex.2023.102436. eCollection 2023 Dec.

Abstract

The mobile aquaponics system is a sustainable integrated aquaculture-crop production system in which wastewater from fish ponds are utilized in crop production, filtered, and returned for aquaculture uses. This process ensures the optimization of water and nutrients as well as the simultaneous production of fish and crops in portable homestead models. The Lack of datasets and documentations on monitoring growth parameters in Sub-Saharan Africa hamper the effective management and prediction of yields. Water quality impacts the fish growth rate, feed consumption, and general well-being irrespective of the system. This research presents an improvement on the IoT water quality sensor system earlier developed in a previous study in carried out in conjunction with two local catfish farmers. The improved system produced datasets that when trained using several machine learning algorithms achieved a test RMSE score of 0.6140 against 1.0128 from the old system for fish length prediction using Decision Tree Regressor. Further testing with the XGBoost Regressor achieved a test RMSE score of 7.0192 for fish weight prediction from the initial IoT dataset and 0.7793 from the improved IoT dataset. Both systems achieved a prediction accuracy of 99%. These evaluations clearly show that the improved system outperformed the initial one.•The discovery and use of improved IoT pond water quality sensors.•Development of machine learning models to evaluate the methods.•Testing of the datasets from the two methods using the machine learning models.

摘要

移动水培养殖系统是一种可持续的综合水产养殖-作物生产系统,其中鱼塘废水用于作物生产,经过过滤后再返回用于水产养殖。这一过程确保了水和养分的优化,以及在便携式家庭模型中同时生产鱼类和作物。撒哈拉以南非洲地区缺乏关于监测生长参数的数据集和文档,这阻碍了产量的有效管理和预测。无论采用何种系统,水质都会影响鱼类的生长速度、饲料消耗和总体健康状况。本研究对先前与两位当地鲶鱼养殖户合作开展的一项研究中早期开发的物联网水质传感器系统进行了改进。改进后的系统生成了数据集,当使用几种机器学习算法进行训练时,对于使用决策树回归器预测鱼的长度,测试均方根误差(RMSE)得分为0.6140,而旧系统的该得分为1.0128。使用极端梯度提升(XGBoost)回归器进行进一步测试时,对于从初始物联网数据集预测鱼的重量,测试RMSE得分为7.0192,而从改进后的物联网数据集预测时,该得分为0.7793。两个系统的预测准确率均达到99%。这些评估清楚地表明改进后的系统优于初始系统。

•发现并使用改进的物联网池塘水质传感器。

•开发机器学习模型以评估这些方法。

•使用机器学习模型对两种方法的数据集进行测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2c9/10585617/4f155ac84f60/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验