Zhu Jingwei, Mo Jianliang, Shi Guohua, Liu Qiying, Xu Gang, Han Gaorong, Liu Yong
School of Materials Science and Engineering, Zhejiang University Hangzhou 310058 China
Weihai CNG New Materials Technolgy R&D Co. Ltd. Weihai China 264299.
RSC Adv. 2023 Oct 19;13(44):30718-30725. doi: 10.1039/d3ra06256b. eCollection 2023 Oct 18.
As the initial process of preparing transparent conductive oxide materials from monobutyltin chloride (MBTC) to tin oxide, the hydrolysis and condensation of MBTC to form a dimer Sn play a critical role. However, the specific mechanism of this process is still unclear. Here we develop a step-by-step searching method based on density functional theory calculation and empirical chemical criteria to determine possible reaction pathways and reveal the most likely reaction mechanism. The wave function analyses of various intermediate species provide more insights into the changes of atomic charge population, chemical bond strength, and coordination situation of central tin in the reaction process. Further investigation on the ring-containing Sn reveals the existence of unique three-center four-electron (3c-4e) interactions to stabilize the four-membered SnO ring structure, which serves as the true driving force for dimerization reaction. These results provide a more detailed understanding of the hydrolysis and condensation process of MBTC and would be helpful for the future optimization of the preparation process of tin oxide films.
作为从一丁基氯化锡(MBTC)制备氧化锡的透明导电氧化物材料的初始过程,MBTC水解和缩合形成二聚体Sn起着关键作用。然而,这一过程的具体机制仍不清楚。在此,我们基于密度泛函理论计算和经验化学标准开发了一种逐步搜索方法,以确定可能的反应途径并揭示最可能的反应机制。对各种中间物种的波函数分析为反应过程中中心锡的原子电荷布居、化学键强度和配位情况的变化提供了更多见解。对含环Sn的进一步研究揭示了独特的三中心四电子(3c-4e)相互作用的存在,以稳定四元SnO环结构,这是二聚反应的真正驱动力。这些结果为MBTC的水解和缩合过程提供了更详细的理解,并将有助于未来氧化锡薄膜制备工艺的优化。