Suppr超能文献

评估前列腺移行区形态学参数在基于前列腺健康指数(PHI)的灰色地带前列腺癌检测预测模型中的作用。

Evaluating the Role of Morphological Parameters in the Prostate Transition Zone in PHI-Based Predictive Models for Detecting Gray Zone Prostate Cancer.

作者信息

Qian Yu-Hang, Shi Yun-Tian, Sheng Xu-Jun, Liao Hai-Hong, Chen Hao-Jie, Shi Bo-Wen, Yu Yong-Jiang

机构信息

Department of Urology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Department of Urology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Clin Med Insights Oncol. 2023 Oct 19;17:11795549231201122. doi: 10.1177/11795549231201122. eCollection 2023.

Abstract

BACKGROUND

The early detection of clinically significant prostate cancer (csPCa) through the integration of multidimensional parameters presents a promising avenue for improving survival outcomes for this fatal disease. This study aimed to assess the contribution of prostate transition zone (TZ) to predictive models based on the prostate health index (PHI), with the goal of enhancing early detection of csPCa in the prostate-specific antigen (PSA) gray zone.

METHODS

In this observational cross-sectional study, a total of 177 PSA gray zone patients (total prostate-specific antigen [tPSA] level ranging from 4.0 to 10.0 ng/mL) were recruited and received PHI detections from August 2020 to March 2022. Prostatic morphologies especially the TZ morphological parameters were measured by transrectal ultrasound (TRUS).

RESULTS

Univariable logistic regression indicated prostatic morphological parameters including total prostate volume (PV) indexes and transitional zone volume indexes were all associated with csPCa ( < .05), while the multivariable analysis demonstrated that C-reactive protein (CRP), PHI, PHI density (PHID), and PHI transition zone density (PHI-TZD) were the 4 independent risk factors. The receiver-operating characteristic (ROC) curve analysis suggested that integrated predictive models (PHID, PHI-TZD) yield area under the curves (AUCs) of 0.9135 and 0.9105 in csPCa prediction, which shows a relatively satisfactory predictive capability compared with other predictors. Moreover, the PHI-TZD outperformed PHID by avoiding 30 patients' unnecessary biopsies while maintaining 74.36% specificity at a sensitivity of 90%. Decision-curve analysis (DCA) confirmed the comparable performance of the multivariable full-risk prediction models, without the inclusion of the net benefit, thereby highlighting the superior diagnostic efficacy of PHID and PHI-TZD in comparison with other diagnostic models, in both univariable and multivariable models.

CONCLUSION

Our data confirmed the value of prostate TZ morphological parameters and suggested a significant advantage for the TZ-adjusted PHI predictive model (PHI-TZD) compared with PHI and PHID in the early detection of gray zone csPCa under specific conditions.

摘要

背景

通过整合多维参数来早期检测临床显著前列腺癌(csPCa),为改善这种致命疾病的生存结局提供了一条有前景的途径。本研究旨在评估前列腺移行区(TZ)对基于前列腺健康指数(PHI)的预测模型的贡献,目标是在前列腺特异性抗原(PSA)灰区增强csPCa的早期检测。

方法

在这项观察性横断面研究中,共招募了177例PSA灰区患者(总前列腺特异性抗原[tPSA]水平为4.0至10.0 ng/mL),并于2020年8月至2022年3月接受了PHI检测。通过经直肠超声(TRUS)测量前列腺形态,尤其是TZ形态参数。

结果

单因素逻辑回归表明,包括总前列腺体积(PV)指数和移行区体积指数在内的前列腺形态参数均与csPCa相关(P < 0.05),而多因素分析表明,C反应蛋白(CRP)、PHI、PHI密度(PHID)和PHI移行区密度(PHI-TZD)是4个独立危险因素。受试者操作特征(ROC)曲线分析表明,综合预测模型(PHID、PHI-TZD)在csPCa预测中的曲线下面积(AUC)分别为0.9135和0.9105,与其他预测指标相比显示出相对满意的预测能力。此外,PHI-TZD优于PHID,可避免30例患者进行不必要的活检,同时在90%的灵敏度下保持74.36%的特异性。决策曲线分析(DCA)证实了多因素全风险预测模型的可比性能,且未纳入净效益,从而突出了PHID和PHI-TZD与其他诊断模型相比在单因素和多因素模型中具有更高的诊断效能。

结论

我们的数据证实了前列腺TZ形态参数的价值,并表明在特定条件下,经TZ调整的PHI预测模型(PHI-TZD)在灰区csPCa的早期检测中比PHI和PHID具有显著优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a592/10588416/d846fb056965/10.1177_11795549231201122-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验